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A long-range interaction via virtual particle-hole pairs between Fermi-liquid quasiparticles leads to a
nonanalytic behavior of the spin susceptibility � as a function of the temperature �T�, magnetic field �B�, and
wave number. In this paper, we study the effect of the Rashba spin-orbit interaction �SOI� on the nonanalytic
behavior of � for a two-dimensional electron liquid. Although the SOI breaks the SU�2� symmetry, it does not
eliminate nonanalyticity but rather makes it anisotropic: while the linear scaling of �zz with T and �B� saturates
at the energy scale set by the SOI, that of �xx �=�yy� continues through this energy scale until renormalization
of the electron-electron interaction in the Cooper channel becomes important. We show that the renormaliza-
tion group flow in the Cooper channel has a nontrivial fixed point and study the consequences of this fixed
point for the nonanalytic behavior of �. An immediate consequence of SOI-induced anisotropy in the nonana-
lytic behavior of � is a possible instability of a second-order ferromagnetic quantum phase transition with
respect to a first-order transition to an XY ferromagnetic state.
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I. INTRODUCTION

The issue of nonanalytic corrections to the Fermi liquid
theory has been studied extensively in recent years.1,2 The
interest to this subject is stimulated by a variety of topics
from intrinsic instabilities of ferromagnetic quantum phase
transitions1–5 to enhancement of the indirect exchange inter-
action between nuclear spins in semiconductor heterostruc-
tures with potential applications in quantum computing.6–8

The origin of the nonanalytic behavior can be traced to an
effective long-range interaction of fermions via virtual
particle-hole pairs with small energies and with momenta
which are either small �compared to the Fermi momentum
kF� or near 2kF.9,10 In two dimensions, this interaction leads
to a linear scaling of � with a characteristic energy scale E,
set by either the temperature T or the magnetic field �B� or
else by the wave number of an inhomogeneous magnetic
field �q� �whichever is larger when measured in appropriate
units�.11–18 Higher-order scattering processes in the Cooper
�particle-particle� channel result in additional logarithmic
renormalization of the result: at the lowest energies, �
�E / ln2 E.3,6,7,19–22 The sign of the effect, i.e., whether � in-
creases or decreases with E, turns out to be nonuniversal, at
least in a generic Fermi liquid regime, i.e., away from the
ferromagnetic instability: while the second-order perturba-
tion theory predicts that � increases with E, the sign of the
effect may be reversed either due to a proximity to the Kohn-
Luttinger superconducting instability6,7,21 or higher-order
processes in the particle-hole channel.3,20

In this paper, we explore the effect of the spin-orbit inter-
action �SOI� on the nonanalytic behavior of the spin suscep-
tibility. The SOI is important for practically all systems of
current interest at low enough energies; at the same time, the
nonanalytic behavior is also an inherently low-energy phe-
nomenon. A natural question to ask is what is the interplay
between these two low-energy effects? At first sight, the SOI
should regularize nonanalyticities at energy scales below the
scale set by this coupling. �For a Rashba-type SOI, the rel-
evant scale is given by the product ���kF, where � is the
coupling constant of the Rashba Hamiltonian; here and in the

rest of the paper, we set � and kB to unity�. Indeed, as we
have already mentioned, the origin of the nonanalyticity is
the long-range effective interaction originating from the sin-
gularities in the particle-hole polarization bubble. If, for in-
stance, the temperature is the largest scale in the problem,
these singularities are smeared by the temperature with an
ensuing nonanalytic dependence of � on T. On the other
hand, if the Zeeman energy �B�B� is larger than T, it provides
a more efficient mechanism of regularization of the singu-
larities and, as result, � exhibits a nonanalytic dependence on
�B�. The same argument applies also to the �q� dependence. It
is often said that the SOI plays the role of an effective mag-
netic field, which acts on electron spins. If so, one should
expect, for instance, a duality between the T and ���kF scal-
ings of � �by analogy to a duality between T and �B�B�
scalings of ��, i.e., in a system with fixed SOI, the nonana-
lytic T dependence of � should saturate at T����kF. The
main message of this paper is that such a duality does not, in
fact, exist; more precisely, not all components of the suscep-
tibility tensor exhibit the duality. In particular, the in-plane
component of �, �xx, continues to scale linearly with T and
�B�B�, even if these energies are smaller than ���kF. On the
other hand, the T and �B�B� dependences of �zz do saturate at
T����kF.

The reason for such a behavior is that although the SOI
does play a role of the effective magnetic field, this field
depends on the electron momentum. To understand the im-
portance of this fact, we consider the Rashba Hamiltonian in
the presence of an external magnetic field,23 which couples
only to the spins of the electrons but not to their orbital
degrees of freedom

HR =
k2

2m
Î + ��� � k�z +

g�B�

2
· B

=
k2

2m
Î +

g�B�

2
· �BR�k� + B� , �1.1�

where � is the SOI, k is the electron momentum in the plane
of a two-dimensional electron gas �2DEG�, � is a vector of
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Pauli matrices, ez is a normal to the plane, g is the gyromag-
netic ratio, �B is the Bohr magneton, and the effective
Rashba field, defined as BR= �2� /g�B��k�ez�, is always in
the 2DEG plane. The effective Zeeman energy is determined
by the total magnetic field Btot=BR+B as

�̄k �
g�B�Btot�

2
= ��2k2 + 2��� � k�z + �2, �1.2�

where we introduced �=g�BB /2 for the “Zeeman field,”
such that � is the Zeeman energy of an electron spin in the
external magnetic field ��=1� and 2� equals to the Zeeman
splitting between spin-up and spin-down states. A combined
effect of the Rashba and external magnetic fields gives rise to
two branches of the electron spectrum �see Fig. 1� with dis-
persions

�k
	 =

k2

2m
	 �̄k. �1.3�

If B 	ez, the external and effective magnetic fields are per-
pendicular to each other, as shown in Fig. 2�a�, so that the
magnitude of the total magnetic field is �Btot�= �B+BR�
=�B2+BR

2 . This means that the external and magnetic fields
are totally interchangeable, and the T dependence of the spin
susceptibility is cut off by the largest of the two scales. How-
ever, if the external field is in the plane �and defines the x
axis in Fig. 2�b��, the magnitude of the total field depends on
the angle 
k between k and B. In particular, for a weak
external field,

�̄k 
 ���k + � sin 
k. �1.4�

If the electron-electron interaction is weak, the nonanalytic
behavior of the spin susceptibility is due to particle-hole
pairs with total momentum near 2kF, formed by electron and
holes moving in almost opposite directions. In this case, the

second term in Eq. �1.4� is of the opposite sign for electrons
and holes. The effective Zeeman energy of the whole pair,
formed by fermions from Rashba branches s and s�, is

�pair = s�̄k − s��̄−k = �s − s�����k + �s + s��� sin 
k. �1.5�

Only those pairs which “know” about the external magnetic
field—via the second term in Eq. �1.5�—renormalize the spin
susceptibility. According to Eq. �1.5�, such pairs are formed
by fermions from the same Rashba branch �s=s��. However,
since the first term in Eq. �1.5� vanishes in this case, such
pairs do not “know” about the SOI, which means that the
Rashba and external magnetic fields are not interchangeable,
and the SOI energy scale does not provide a cutoff for the T
dependence of �.

We now briefly summarize the main results of the paper.
We limit our consideration to the two-dimensional �2D� case
and to the Rashba SO coupling, present in any 2D system
with broken symmetry with respect to reversal of the normal
to the plane. We focus on the dependencies of � on T, �, and
�B�, deferring a detailed discussion of the dependence of � on
�q� to another occasion.24 Throughout the paper, we assume
that the SO coupling and electron-electron interaction, char-
acterized by the coupling constant U, are weak, i.e., ���kF
�EF and mU�1. The latter condition implies that only 2kF
scattering processes are relevant for the nonanalytic behavior
of the spin susceptibility. Accordingly, U is the 2kF Fourier
transform of the interaction potential. Renormalization pro-
vides another small energy scale at which the product
�mU /2��ln�
 /TC� �where 
 is an ultraviolet cutoff
of the theory� becomes comparable to unity, i.e., TC
�
 exp�−2� /mU�. Depending on the ratio of the two small
energy scales—���kF and TC—different behaviors are pos-
sible.

In Fig. 3�a�, we sketch the T dependence of �zz for the
case of TC� ���kF. For T� ���kF, �zz scales linearly with T,
in agreement with previous studies; a correction due to the
SOI is on the order of ��kF /T�2 �cf. Eq. �3.29��. For TC
�T� ���kF, �zz saturates at a value proportional to ���; the
correction due to finite T is on the order of �T / ���kF�3 �cf. Eq.
�3.30��. For T�TC, renormalization in the Cooper channel
becomes important. In the absence of the SOI, the coupling
constant of the electron-electron interaction in the Cooper
channel flows to zero as U / �ln T�. Consequently, the T scal-
ing of the spin susceptibility changes to T / ln2 T for T�TC.
In the presence of the SOI, the situation is different. We
show that the renormalization group �RG� flow of U in this
case has a nontrivial fixed point characterized by finite value
of the electron-electron coupling, which is only numerically
smaller than its bare value. In between these two limits, the
coupling constant changes nonmonotonically with ln T, and
so does �zz. In both high- and low T limits �compared to TC�,
however, �zz is almost T independent, so Cooper renormal-
ization affects the ��� term in �zz.

The T dependence of �zz for TC� ���kF is sketched in Fig.
3�b�. In this case, the crossover between the T and T / ln2 T
forms occurs first, at T�TC, while the T / ln2 T form crosses
over to ��� at T����kF.

1 2 3
k �mΑ�

�1

1

2

3
Ε �Ε0�

FIG. 1. �Color online� Rashba spectrum in zero magnetic field.
The energy is measured in units of �0�m�2 /2; the momentum is
measured in units of m�.
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FIG. 2. Interplay between the external magnetic field B and
effective magnetic field BR due to the Rashba spin-orbit interaction.
Left: the external field is perpendicular to the plane of motion.
Right: the external field is in the plane of motion.
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We now turn to �xx. For TC� ���kF, its T dependence is
shown in Fig. 3�c�. The high-T behavior is again linear �also
with a ��kF /T�2 correction, cf. Eq. �3.50��. For TC�T
� ���kF, this behavior changes to �xx� ���kF /6+T /2, which
means that �xx continues to decrease with T with a slope half
of that at higher T �cf. Eq. �3.51��. Finally, for T�TC, Coo-
per renormalization leads to the same ��� dependence as for
�zz but with a different prefactor. The behavior of �xx for
���kF�TC is shown in Fig. 3�d�. Apart from the numbers,
this behavior is similar to that of �zz in that case.

The dependences of �xx and �zz on the external magnetic
field can be obtained �up to a numerical coefficient� simply
by replacing T by � in all formulas presented above. In
particular, if Cooper renormalization can be ignored, both �xx
and �zz scale linearly with � for �� ���kF but only �xx con-
tinues to scale with � for �� ���kF. A linear scaling of �ii
with � implies the presence of a nonanalytic, �Mi�3 term in
the free energy, where M is the magnetization and i=x ,y ,z.
Consequently, while the cubic term is isotropic �F� �M�3� for
larger M �so that the corresponding Zeeman energy is above
���kF�, it is anisotropic at smaller �M�: F� �Mx�3+ �My�3. A
negative cubic term in F implies metamagnetism and an in-
stability of the second-order ferromagnetic quantum phase
transition toward a first-order one.1,3 An anisotropic cubic
term implies anisotropic metamagnetism, i.e., a phase transi-
tion in a finite magnetic field, if it is applied along the plane
of motion, but no transition for a perpendicular field, and
also that the first-order transition is into an XY rather than
Heisenberg ferromagnetic state. This issue is discussed in
more detail in Sec. V.

The rest of the paper is organized as follows. In Sec. II,
we formulate the problem and discuss the T dependence of
the spin susceptibility for free electrons with Rashba spec-
trum �more details on this subject are given in Appendix A�.
Section III A explains the general strategy of extracting the

nonanalytic behavior of � from the thermodynamic potential
in the presence of the SOI. The second-order perturbation
theory for the temperature and magnetic-field dependences
of the transverse and in-plane susceptibilities is presented in
Secs. III B and III C, respectively. In Sec. III D, we show
that, as is also the case in the absence of the SOI, there is no
contribution to the nonanalytic behavior of the spin suscep-
tibility from processes with small momentum transfers, in-
cluding the transfers commensurate with �small� Rashba
splitting of the free-electron spectrum �more details on this
issue are provided in Appendix B�. Renormalization of spin
susceptibility in the Cooper channel is considered in Sec. IV.
An explicit calculation of the third-order Cooper contribution
to �zz is shown in Sec. IV B. In Sec. IV C 2 we derive the
RG flow equations for the scattering amplitudes in the ab-
sence of the magnetic field; the effect of the finite field on the
RG flow is discussed in Appendix C. The effect of Cooper-
channel renormalization on the nonanalytic behavior of �zz
and �xx is discussed in Secs. IV C 3 and IV C 4, correspond-
ingly. Implications of our results in the context of quantum
phase transitions are discussed in Sec. V, where we also give
our conclusions.

II. SPIN SUSCEPTIBILITY OF FREE RASHBA FERMIONS

In this section, we set the notations and discuss briefly the
properties of Rashba electrons in the absence of the electron-
electron interaction. The Hamiltonian describing a 2DEG in
the presence of a Rashba SOI and an external magnetic field
B is given by Eq. �1.1�.

In the following, we consider two orientations of the mag-
netic field: transverse �B=Bez� and parallel �B=Bex� to the
2DEG plane. It is important to emphasize that, when discuss-
ing the perpendicular magnetic field, we neglect its orbital
effect. Certainly, if the spin susceptibility is measured as a
response to an external magnetic field, its orbital and spin
effects cannot be separated. However, there are situations
when the spin part of �zz is of primary importance. For ex-
ample, the Ruderman-Kittel-Kasuya-Yosida �RKKY� inter-
action between the local moments located in the 2DEG plane
arises only from the spin susceptibility of itinerant electrons
because the orbital effect of the dipolar magnetic field of
such moments is negligible. In this case, �xx and �zz deter-
mine the strength of the RKKY interaction between two mo-
ments aligned along the x and z axes, respectively. Also,
divergences of �zz and �xx signal ferromagnetic transitions
into states with easy-axis and easy-plane anisotropies, re-
spectively. Since it is this kind of physical situations we are
primarily interested in this paper, we will ignore the orbital
effect of the field from now on.

The Green’s function corresponding to Hamiltonian �1.1�
is obtained by matrix inversion,

ĜK �
1

i� − Ĥ
= �

s=	

�̂s�k�gs�K� , �2.1�

where we use the “relativistic” notation K��� ,k� with �

being a fermionic Matsubara frequency; the matrix �̂s�k� is
defined as

�Α��4 �Α��3

T

a�

TC �Α�kF
T

Χ0
�

Χzz

�Α��4 T�ln2T

T

b�

�Α�kF TC
T

Χ0
�

Χzz

�Α��6 �Α��6�T�2

T

c�

TC �Α�kF
T

Χ0
�

Χxx

�Α��6 T�ln2T

T

d�

�Α�kF TC
T

Χ0
�

Χxx

FIG. 3. �Color online� A sketch of the temperature dependence
of the spin susceptibility for the transverse �top� and in-plane �bot-
tom� magnetic field. Dashed segments in crossovers between vari-
ous asymptotic regimes do not represent results of actual calcula-
tions. The left �right� panel is valid for TC� ���kF�TC� ���kF� where
TC�
 exp�−2� /mU� is the temperature below which renormaliza-
tion in the Cooper channel becomes significant. The zero tempera-
ture limit for interacting electrons, denoted by �̃0, is given by Eq.
�2.8� in the random phase approximation.
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�̂s�k� �
1

2
�Î + s�̂� , �2.2a�

�̂ =
��ky�̂x − kx�̂y� + �̂ · �

�̄k

, �2.2b�

gs�K�=1 / �i�−�k−s�̄k� is the single-electron Green’s func-

tion, �k� k2

2m −�, � is the chemical potential, and �̄k is given
by Eq. �1.2�.

As we have already pointed out in the Introduction, an
important difference between the cases of transverse and in-
plane magnetic field is the dependence of the effective Zee-
man energy �Eq. �1.2�� on the electron momentum. For the
transverse magnetic field ��x=�y =0, �z=��, the Zeeman
energy is isotropic in the momentum space and quadratic in

� in the weak-field limit: �̄k
���kF+�2 /2���kF. Corre-
spondingly, the Fermi surfaces of Rashba branches are con-
centric circles with slightly �in proportion to �2� different
radii. For the in-plane magnetic field ��x=�, �y =�z=0�, the
effective Zeeman energy is anisotropic in the momentum
space, cf. Eq. �1.4�. Correspondingly, the Fermi surfaces of
Rashba branches are also anisotropic and their centers are
shifted by finite momentum, proportional to �x.

We now give a brief summary of results for the suscepti-
bility in the absence of electron-electron interaction, which
sets the zeroth order of the perturbation theory �for more
details, see Appendix A�. The in-plane rotational symmetry
of the Rashba Hamiltonian guarantees that �yy

�0
=�xx
�0
. The

static uniform susceptibility �defined in the limit of zero fre-
quency and vanishingly small wave number� is still diagonal
even in the presence of the SOI: �ij

�0
=�ij�ii
�0
, although �xx

�0


=�yy
�0
��zz

�0
 in general. The susceptibility depends strongly

on whether both or only the lower of the two Rashba
branches are occupied, see Fig. 4. In the latter case, the spin
response is strongly anisotropic. At T=0,

�zz
�0
 = �0

�1 + �/�0, �2.3a�

�xx
�0
 = �0

1 + �/2�0

�1 + �/�0

, �2.3b�

where �0��B
2m /� is the spin susceptibility of 2D electrons

in the absence of the SOI, �0=m�2 /2 is the depth of the
energy minimum of the lower branch, and the chemical po-
tential � is within the range −�0���0. The in-plane sus-
ceptibility exhibits a one-dimensional-like van Hove singu-
larity at the bottom of the lower branch, i.e., for �→−�0. On
the other hand, if both branches are occupied �which is the
case for ��0�, the spin susceptibility is isotropic and the
same as in the absence of the SOI,

�zz
�0
 = �xx

�0
 = �0. �2.4�

This isotropy can be related to a hidden symmetry of the
Rashba Hamiltonian manifested by conservation of the
square of the electron’s velocity operator v̂.25 The eigenvalue
of v̂2, given by 2� /m+2�2 with � being the energy, is the
same for both branches. The square of the group velocity
vg

2= ��k�k
	�2=2� /m+�2 also does not depend on the branch

index. Therefore, the total density of states,

���� =
1

2�

k+ + k−

�vg�
=

m

�
, �2.5�

where k	= �m�+�m2�2+2m� are the momenta of the 	
branches corresponding to energy �, is the same as without
the SOI if both branches are occupied. One can show also
that isotropy of the spin susceptibility is not specific for the
Rashba coupling but is there also in the presence of both
Rashba and �linear� Dresselhaus interactions.26

As one step beyond the free-electron model, we consider
a Stoner-like enhancement of the spin susceptibility by the
electron-electron interaction. In the absence of the SOI and
for a pointlike interaction U, the renormalized spin suscepti-
bility is given by

� =
�0

1 − mU/�
. �2.6�

In the presence of the SOI, the ladder series for the suscep-
tibility, shown in Fig. 5, is given by

�ii = �ii
�0
 + U�B

2�
K,P

Tr��̂iĜ�K + Q�Ĝ�P + Q��̂iĜ�P�Ĝ�K��

− U2�B
2 �

K,P,L
Tr��̂iĜ�K + Q�Ĝ�P + Q�Ĝ�L + Q��̂iĜ�L�Ĝ�P�Ĝ�P�� + ¯ , �2.7�

�Ε0 0 Ε0 2 Ε0
Μ�Ε0�

1

2

3
Χ�ΜB

2 m�Π�

FIG. 4. �Color online� Spin susceptibility of free Rashba fermi-
ons �in units of �0=�B

2m /�� as a function of the chemical potential
� �in units of �0=m�2 /2�. Solid �red�: �xx

�0
; dashed �blue�: �zz
�0
.

Note that �xx
�0
��zz

�0
 if only the lowest Rashba branch is occupied
�−�0���0� but �xx

�0
=�zz
�0
=�0 if both branches are occupied

���0� at T=0.

++ + . . .• • • • • •

FIG. 5. The RPA diagrams for the spin susceptibility corre-
sponding to Eq. �2.7�.
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where Q= ��=0,q→0� and i=x ,z. Although the traces do
look different for �xx and �zz, these differences disappear
after angular integrations, and the resulting series are the
same. As we have shown above, the zero-order susceptibili-
ties are also the same �and equal to �0� if both Rashba
branches are occupied; hence

�ii = �B
2�m

�
+

m2U

�2 +
m3U2

�3 + ¯ � =
�0

1 − mU/�
, �2.8�

which is the same result as in Eq. �2.6�. Therefore, at the
mean-field level, the spin susceptibility remains isotropic and
independent of the SOI. In the rest of the paper, we will
show that none of these two features survives beyond the
mean-field level: the actual spin susceptibility is anisotropic
and both its components do depend on the SOI.

We now come back to the free-electron model and discuss
the T dependence of the spin susceptibility. A special feature
of a 2DEG in the absence of the SOI is a breakdown of the
Sommerfeld expansion at finite T: since the density of states
does not depend on the energy, all power-law terms of this
expansion vanish, and the resulting T dependence of ��0
 is
only exponential. The SOI leads to the energy dependence of
the density of states for the individual branches, and one
would expect the Sommerfeld expansion to be restored. This
is what indeed happens if only the lower branch is occupied.
In this case,

�zz
�0
�T� = �zz

�0
�0� − �0
�2

24
� T

�0
�2 1

�1 + �/�0�3/2 , �2.9a�

�xx
�0
�T� = �xx

�0
�0� + �0
�2

48
� T

�0
�2 2 − �/�0

�1 + �/�0�5/2 , �2.9b�

provided that T�min�−� ,�0+�
. �Here, �zz
�0
�0� and �xx

�0
�0�
are the zero temperature values given by Eqs. �2.3a� and
�2.3b��. However, if both branches are occupied, the energy
dependent terms in the branch densities of states cancel out,
and the resulting dependence is exponential, similar to the
case of no SOI, although with different preexponential fac-
tors,

�zz
�0
�T� = �0�1 −

T

2�0
e−�/T� , �2.10a�

�xx
�0
�T� = �0�1 +

T2

4�0
2e−�/T� �2.10b�

for T��0��, and

�zz
�0
�T� = �0�1 − �1 −

2�0

3T
�e−�/T� , �2.11a�

�xx
�0
�T� = �0�1 − �1 −

4�0

3T
�e−�/T� �2.11b�

for �0�T��. In a similar way, one can show that there are
no power-law terms in the dependence of �xx

�0
 and �zz
�0
 on the

external magnetic field.
Notice that �xx��zz at finite temperature, even if both

Rashba subbands are occupied. This suggests that the hidden
symmetry of the Rashba Hamiltonian is, in fact, a rotational
symmetry in a �2+1� space with imaginary time being an
extra dimension.27 Finite temperature should then play a role
of finite size along the time axis breaking the rotational sym-
metry.

In what follows, we assume that the SOI is weak, i.e.,
����vF, and thus the energy scales describing SOI are small:
m�2� ���kF��. This condition also means that both Rashba
branches are occupied. �Also, from now on we relabel �
→EF.� The main result of this section is that, for a weak SO
coupling, the T and � dependences of � in the free case are
at least exponentially weak and thus cannot mask the power-
law dependences arising from the electron-electron interac-
tion, which are discussed in the rest of the paper.

III. SPIN SUSCEPTIBILITY TO SECOND ORDER IN THE
ELECTRON-ELECTRON INTERACTION

A. General strategy

The spin susceptibility tensor �ij is related to the thermo-
dynamic �grand canonical� potential ��T ,� ,�� by the fol-
lowing identity:

�ij�T,�� = −� �2�

�Bi�Bj
�

B=0
. �3.1�

To second order in the electron-electron interaction U�q�,
there is only one diagram for the thermodynamic potential
that gives rise to a nonanalytic behavior: diagram �a� in
Fig. 6. The rest of the diagrams in this figure can be shown to
be irrelevant �cf. Sec. III D�. Algebraically, diagram �a� in
Fig. 6 reads

���2� � −
1

4�
Q

�
K

�
P

U2��k − p��Tr�ĜKĜP�Tr�ĜK+QĜP+Q� ,

�3.2�

where �Q=T���d2q / �2��2, �K=T���d2k / �2��2, and we
use “relativistic” notation K��� ,k� with a fermionic fre-

P

P − Q

K + Q

K

U (q) U (q)

b)

K

PK − Q

P − Q

U (|p − k|)

U (q)

c)

K + Q + Q′

K + Q′K + Q

K

U (q)

U (q′)

d)

K + Q

KK

K + Q′

U (q)

U (q′)

e)

K

P

K + Q

P + Q

U (k − p) U (k − p)

a)

FIG. 6. Second-order diagrams for the thermodynamic potential. A nonanalytic contribution comes only from diagram �a�, where the
momenta are arranged in such a way that k
−p while Q is small; therefore, k
 p
kF, and the momentum transfer in each scattering event
is close to �k−p�
2kF. As is shown in Sec. III D, diagrams �b�–�e� do not contribute to the nonanalytic behavior of the spin susceptibility.
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quency � and Q��� ,q� with a bosonic frequency �.
Evaluation of the first spin trace in Eq. �3.2� yields

Tr�ĜKĜP� =
1

2�
ss�

Bss��k,p�gs�K�gs��P� , �3.3�

where

Bss��k,p� � 1 + ss�
�2k · p + ��� � �k + p��z + �2

�̄k�̄p

,

�3.4�

and �̄k is given by Eq. �1.2�. The second-order thermody-
namic potential then becomes

���2� � −
1

16�
Q

�
K

�
P

U2��k − p��Bs1s3
�k,p�Bs2s4

�k + q,p + q�gs1
�K�gs2

�P�gs3
�K + Q�gs4

�P + Q� . �3.5�

Equation �3.5� describes the interaction among electrons
from all Rashba branches via an effective vertex
U��k−p � �Bss��k ,p�, which depends not only on the momen-
tum transfer k−p but also on the initial momenta k and p
themselves. This last dependence is due to anisotropy of the
Rashba spinors.

It has been shown in Refs. 3 and 15 that, at weak cou-
pling, the main contribution to the nonanalytic part of the
spin susceptibility comes from “backscattering” processes,
i.e., processes with p
−k and small q �compared to kF�. In
particular, the second-order contribution is entirely of the
backscattering type. The proof given in Ref. 3 applies to any
kind of the angular-dependent vertex and, thus, also to ver-
tices in Eq. �3.5�. Therefore, the calculation can be simplified
dramatically by putting in p=−k and neglecting q in the
effective vertices. The last assumption is justified as long as
the typical values of q are determined by the smallest energy
of the problem, i.e., q�max�T /vF ,m���
�kF. By the same
argument, the magnitudes of k and p in the vertices can be
replaced by kF. The bare interaction is then evaluated at
�k−p�
2kF, and we introduce a coupling constant U

�U�2kF�. Ignoring the angular dependence of Bsisj
for a mo-

ment, Eq. �3.5� is reduced to a convolution of two particle-
hole bubbles, formed by electrons belonging to either the
same or different Rashba branches,

�sisj
�Q� = �

K

gsi
�K�gsj

�K + Q� . �3.6�

By assumption, both components of Q in �sisj
�Q�, i.e., �

and q, are small �compared to EF and kF, correspondingly�. It
is important to realize that, despite a two-band nature of the
Rashba spectrum, �sisj

�Q� has no thresholdlike singularities
at the momentum q0=2m�, separating the Rashba
subbands28 �for a detailed derivation of this result, see Ap-
pendix B�. Therefore, the nonanalytic behavior of the spin
susceptibility comes only from the Landau-damping singu-
larity of the dynamic bubble, as it is also the case in the
absence of the SOI.

After the simplifications described above, Eq. �3.5�
becomes

���2� � −
U2

16 �
Q

�
K

�
P

Bs1s3
Bs2s4

gs1
�K�gs2

�P�gs3
�K + Q�gs4

�P + Q� , �3.7�

where

Bss� � Bss��kF,− kF� = 1 + ss�
�2 − �2kF

2

�̄kF
�̄−kF

, �3.8�

and kF��k /k�kF. Finally, to obtain the leading T depen-
dence of �ij, it suffices to replace the fermionic Matsubara
sums in Eq. �3.7� by integrals but keep the bosonic Matsub-
ara sum as it is. The rest of the calculations proceed some-
what differently for the cases of the transverse and in-plane
magnetic fields.

B. Transverse magnetic field

First, we consider a simpler case of the magnetic field
transverse to the 2DEG plane: �=g�BBez /2. In this case, the
effective Zeeman energy is isotropic in the momentum

space; therefore, �̄kF
= �̄−kF

and

Bss� = 1 + ss�
�2 − �2kF

2

�̄kF

2
= 1 + ss�

�2 − �2kF
2

�2 + �2kF
2 . �3.9�

Thereby the integrals over d3K and d3P separate, and one
obtains
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��zz
�2� = −

U2

16 �
s1¯s4=	1

Bs1s3
Bs2s4�

Q

�s1s2
�Q��s3s4

�Q� ,

�3.10�

where �sisj
�Q� is given by Eq. �3.6�. The single-particle

spectrum in the second Green’s function in Eq. �3.6� can be
linearized with respect to q as �k+q
�k+vFq cos �kq with
�kq���k ,q�. Since, by assumption, the SOI is small, the
effective Zeeman energy in the Green’s functions can be re-
placed by its value at k=kF. Integration over dkk can be then
replaced by that over d�k. The integrals over �, �k, and �kq
are performed in the same way as in the absence of the SOI,
and we arrive at the following expression for the dynamic
part of the polarization bubble:

�ss� =
m

2�

���

��� + i�s� − s��̄kF
�2 + �vFq�2

. �3.11�

We pause here for a comment. The polarization bubble in
Eq. �3.11� is very similar to the dynamic part of the polar-
ization bubble for spin-up and -down electrons in the pres-
ence of the magnetic field but in the absence of the SOI,3

�↑↓��,q� =
m

2�

���
��� − ig�BB�2 + �vFq�2

. �3.12�

As we already mentioned in Sec. I, the nonanalytic behavior
of the spin susceptibility is due to an effective interaction of
Fermi-liquid quasiparticles via particle-hole pairs with small
energies and momenta near 2kF. Our calculation is arranged
in such a way that, on a technical level, we deal with pairs
with small momenta q. The spectral weight of these pairs is
proportional to the polarization bubble, which is singular for
small � and q. Since finite magnetic field cuts off the singu-
larity in �↑↓�� ,q�, the nonanalytic dependence of � on, e.g.,
temperature, saturates when T becomes comparable to the
Zeeman splitting g�BB. At lower energies, � exhibits a
nonanalytic dependence on �: �� ���. Likewise, the singu-

larity in Eq. �3.11� is cut at the effective Zeeman energy �̄kF
,

which reduces to the SOI energy scale ���kF, when the real
magnetic field goes to zero. Therefore, one should expect the
nonanalytic T dependence of �zz to be cut by the SOI. Al-
though soft particle-hole pairs can be still generated within a
given branch, i.e., for s=s�, the entire dependence on the
Zeeman energy in this case is eliminated and processes of
this type do not affect the spin susceptibility. In the rest of
this section, we are going to demonstrate that the SOI indeed
plays a role of the magnetic field for �zz.

For later convenience, we define a new quantity

Ps � Ps��,q� =
1

��� − 2is�̄kF
�2 + vF

2q2
�3.13�

and sum over the Rashba branches in Eq. �3.10�. The contri-
bution of the set �s1=s2�s, s3=s4�s�
 does not depend on

�̄kF
;

�
s,s�

Bss�
2

�ss
2 = �m�

2�
�2

�
s,s�

Bss�
2 P0

2. �3.14�

The set �s1=−s2�s, s3=−s4�s�
 gives

�
s,s�

Bss�B−s,−s��s,−s�s�,−s� = �m�

2�
�2

�
s,s�

Bss�
2 PsPs�,

�3.15�

where we used that Bss=B−s,−s. Finally, the sets �s1=s2�s,
s3=−s4�s�
 and �s1=−s2�s, s3=s4�s�
 contribute

�
s,s�

�Bss�Bs,−s��ss�s�,−s� + Bss�B−s,s��s,−s�s�s��

= 2�m�

2�
�2

�
ss�

Bss�Bs,−s�P0Ps�, �3.16�

where we relabeled the indices in the second sum �s→s�,
s�→s� and used the symmetry property Bss�=Bs�s.

The angular integral contributes a unity so that

��zz
�2� = − �mU

8�
�2

T�
�

�2� dqq

2�
�
ss�

�Bss�
2 �P0

2 + PsPs��

+ 2Bss�Bs,−s�P0Ps�� . �3.17�

Now we sum over ss�, add and subtract a combination
2��4kF

4 +4�2kF
2�2+�4�P0

2 inside the square brackets and ob-
tain, after some algebra,

��zz
�2� = − �mU

8�
�2

T�
�

�2�
0

 dqq

2�

4

�̄kF

4
�4�̄kF

4 P0
2

+ �4�P+
2 + P−

2 − 2P0
2� + 4�2kF

2�2P0�P+ + P− − 2P0�� ,

�3.18�

where we used that �dqq�P+P−−P0
2�=0. The first term in the

square brackets in Eq. �3.18� does not depend on the effec-

tive field �̄kF
and, therefore, can be dropped. Integration over

q in the remaining terms is performed as

� dqqP0�P+ + P− − 2P0� =
1

vF
2 ln

�2

�2 + �̄kF

2
, �3.19�

� dqq�P+
2 + P−

2 − 2P0
2� =

1

vF
2 ln

�2

�2 + 4�̄kF

2
. �3.20�

Collecting all terms together, we obtain

��zz
�2� = −

2

�
� mU

4�vF
�2� �4

4�̄kF

4
T�

�

�2 ln
�2

�2 + 4�̄kF

2

+
�2kF

2�2

�̄kF

4
T�

�

�2 ln
�2

�2 + �̄kF

2 � . �3.21�

The bosonic sum is evaluated by replacing the sum by an
integral as follows:
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T�
�

F��� = �
− 

 d�

2�
coth

�

2T
Im�lim

�→0
F�− i� + ���

�3.22�

and using the identity

Im� lim
�→0

�− i� + ��2 ln
�− i� + ��2

�− i� + ��2 + x2�
= ��2 sgn �!�x2 − �2� , �3.23�

where !�x� stands for the step function.
The thermodynamic potential then becomes

��zz
�2� = −

2

�
� mU

4�vF
�2

T3� �4

4�̄kF

4
F�2�̄kF

T
�

+
�2kF

2�2

�̄kF

4
F� �̄kF

T
�� , �3.24�

with

F�y� = �
0

y

dxx2 coth�x/2� = − �1/3�y2�y + 6 Li1�ey��

+ 4���3� + y Li2�ey� − Li3�ey�� , �3.25�

where Lin�z���k=1
 zk /kn is the polylogarithm function and

��z� is the Riemann zeta function. In practice, the integral
form of F�y� is more convenient as it can be easily expanded
in the limits of small and large argument. Indeed, for y�1,
one expands coth�x /2� as coth�x /2�=2 /x+x /6 and, upon in-
tegrating over x in Eq. �3.25�, obtains

F�y� = y2 +
y3

24
+ O�y4� for 0 � y � 1. �3.26�

For y�1, one subtracts unity from the integrand and re-
places the upper limit in the remaining integral by infinity,

F�y� =
y3

3
+ �

0

y

dxx2�coth
x

2
− 1�

=
y3

3
+ �

0

 

dxx2�coth
x

2
− 1� − �

y

 

dxx2�coth
x

2
− 1�

=
y3

3
+ 4��3� + O�e−y� for y � 1. �3.27�

1. Temperature dependence of �zz

The �linear� spin susceptibility is given by �zz
=�−�2� /�Bz

2�B=0, which means that only terms proportional to
�2 in the thermodynamic potential matter. Therefore, for fi-
nite �, the spin susceptibility comes entirely from the second
term in the square brackets of Eq. �3.24�, which is propor-
tional to �2kF

2�2. �On the other hand, for �=0 the second

term vanishes, while �4 / �̄kF

4 =1, and the spin susceptibility
comes exclusively from the first term: ��zz

�2� still depends on

the magnetic field through F��̄kF
/T�, where the � depen-

dence must be retained; in this case, F��̄kF
/T� is evaluated

as shown in Ref. 15.� Neglecting the first term and differen-
tiating the second one, we obtain the interaction correction to
�zz for �→0 as

��zz
�2� = 2�0�mU

4�
�2 T3

�2kF
2EF

F� ���kF

T
� . �3.28�

For T� ���kF, the asymptotic expansion of F in Eq. �3.26�
gives

��zz
�2� 
 2�0�mU

4�
�2� T

EF
+

1

24

�2kF
2

TEF
+ ¯ � . �3.29�

The first term in Eq. �3.29� coincides with the result of Refs.
3, 15, 21, and 22 obtained in the absence of the SOI, while
the second term is a correction due to the finite SOI. In the
opposite limit, i.e., for T� ���kF, the asymptotic expansion of
F in Eq. �3.27� gives

��zz
�2� 
 2�0�mU

4�
�2� ���kF

3EF
+ 4��3�

T3

�2kF
2EF

+ ¯ � .

�3.30�

As it was anticipated, the SOI cuts off the nonanalytic T
dependence for T� ���kF. However, the T dependence is re-
placed by a nonanalytic ��� dependence on the SO coupling.

Normalizing Eq. �3.28� to the leading T dependent term
for �=0, i.e., by ��zz

�2��T ,�=0�=�0�mU /4��2�T /EF�, we ex-
press ��zz

�2� via a scaling function of the variable T / ���kF,

��zz
�2��T,��

��zz
�2��T,� = 0�

= � T

���kF
�2

F� ���kF

T
� . �3.31�

The left-hand side of Eq. �3.31� is plotted in Fig. 7 along
with its high and low T asymptotic forms.

Now we can give a physical interpretation of the above
results. Although the electron-electron interaction mixes
Rashba branches, the final result in Eq. �3.28� comes only
from a special combination of electron states. Namely, three
out of four electron states involved in the scattering process
�two for the incoming and two for the outgoing electrons�
must belong to the same Rashba branch, while the last one
must belong to the opposite branch, as shown in Fig. 8�a�.
This can be seen from Eq. �3.18� by considering four terms

0 0.5 1 1.5

1

1.5

T��Α�kF

∆Χ
zz�2
� �

T
,Α
��
∆Χ

zz�2
� �

T
,Α



0�

FIG. 7. �Color online� The second-order nonanalytic correction
to �zz, normalized to its value in the absence of the SOI, as a
function of T / ���kF �cf. Eq. �3.31��. The asymptotic forms, given by
Eqs. �3.29� and �3.29�, are shown by dashed �red and blue� lines.
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in the square brackets. The first term, proportional to �̄kF

4 ,
does not depend on the field upon the cancellation with an

overall factor of �̄kF

4 in the denominator; the second term,
proportional to �4kF

4 , vanishes; the third term is already pro-
portional to �4 and, thus, cannot affect the spin susceptibility
for finite �. Therefore, the effect comes exclusively from the
last term, proportional to �2, because the product Bss�Bs,−s� is
equal to 4�2��kF�2 / ��2kF

2 +�2�2
4�2 / ��kF�2 for any choice
of s and s�. This term corresponds to the structure
�ss�Bss�Bs,−s��s,−s�s�s� in Eq. �3.17�. The diagrams corre-
sponding to this structure are shown in Fig. 8�a�. Pairing
electron Green’s functions from different bubbles, we always
obtain a combination �Kg	�K�g	�K+Q�, which depends
neither on the SOI nor on the magnetic field, and a combi-
nation �Kg	�K�g��K+Q�, which depends on both via the

effective Zeeman energy �̄kF
=��2kF

2 +�2. In the weak-field
limit, one needs to keep �2 only in the prefactor. The singu-
larity in the combination �Kg	�K�g��K+Q� is then regular-
ized by finite SOI, which is the reason why the nonanalytic T
dependence is cut off by the SOI.

2. Magnetic-field dependence of �zz

Now we consider the case of T�max�� , ���kF
 when, to
first approximation, one can set T=0. In this case, one can
define a nonlinear susceptibility �zz�Bz ,��=−�2�zz /�Bz

2

evaluated at finite rather than zero magnetic field. For T
→0, we replace the scaling function F in Eq. �3.24� by the
first term in its large-argument asymptotic form �3.27� to
obtain

��zz
�2� = −

2

3�
� mU

4�vF
�22�4 + �2kF

2�2

��2 + �2kF
2

. �3.32�

Differentiating twice with respect to the field, we find

��̃zz
�2��Bz,�� = �0�mU

4�
�2 ���

EF
G� ���kF

�
� , �3.33�

where

G�x� =
2x6 + 23x4 + 30x2 + 12

3�1 + x2�5/2 �3.34�

has the following asymptotics:

G�x � 1� = 4 + x4/6 + ¯ ,

G�x � 1� = �2/3��x� + 6/�x� + ¯ . �3.35�

For ���� ���kF, the nonanalytic correction �̃zz�Bz ,�� reduces
to the result of Ref. 3, obtained in the absence of the SOI,
plus a correction term,

��zz
�2��Bz,�� = 4�0�mU

4�
�2� ���

EF
+

1

24

�4kF
4

���3EF
+ ¯ � .

�3.36�

In the opposite limit of ���� ���kF, the nonanalytic field de-
pendence is cut off by the SOI

��̃zz
�2��Bz,�� =

2

3
�0�mU

4�
�2� ���kF

EF
+ 9

�2

���kFEF
+ ¯ � .

�3.37�

C. In-plane magnetic field

If the magnetic field is along the x axis, �=�BBex /2,

the effective Zeeman energies, �̄	kF

���2kF
2 	2�kF sin 
k�+�2, depends on the angle 
k be-

tween k and the direction of the field, chosen as the x axis.
Coming back to Eq. �3.7�, we integrate first over the fermi-
onic frequencies, then over the magnitudes of the fermionic
momenta, then over the angle between p and q, and finally
over the angle between q and k �at fixed k�. This yields

��xx
�2� = −

U2

16
T�

�
� d
k

2�
� dqq

2�
�
�si


Bs1s3
Bs2s4

�s1s2

+kF�s3s4

−kF ,

�3.38�

where

�ss�
	kF � �ss�

	kF��,q;
k� = �
K

�gs
	kF�K�gs�

	kF�K + Q�

=
m

2�

���

��� + i�s� − s��̄	kF
�2 + vF

2q2
, �3.39�

with gs
	kF�K�=1 / �i�−�k−s�̄	kF

�, and �K� indicates that the
integration over 
k is excluded. The remaining integration
over 
k is performed last after integration over q and sum-
mation over �.

As in Sec. III B, it is convenient to define a new quantity

Ps
	kF � Ps

	kF��,q;
k� =
1

��� − 2is�̄	kF
�2 + vF

2q2
,

�3.40�

and to rewrite the thermodynamic potential as

s

s′

s

−s′

=

+

+

+

−

+ . . .a)

s

−s

s′

−s′

=

+

−
+

−

+ . . .b)

FIG. 8. Top: diagrams contributing to nonanalytic behavior of
�zz. There are eight such diagrams with the following choice of
Rashba indices: " " " #, " " # ", " # " ", # " " ", # #
# ", # # " #, # " # #, and " # # #; one of the them is
shown on the right. Bottom: diagrams contributing to nonanalytic
behavior of �xx. There are four such diagrams with the following
choice of Rashba indices: " # " #, " # # ", # " " #, and #
" # "; one of them is shown on the right.
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��xx
�2� = − �mU

8�
�2

T�
�

�2� d
k

2�
� dqq

2�
�
ss�

�Bss�Bs,−s�P0�Ps�
+kF + Ps�

−kF� + Bss�
2 �P0

2 + Ps
+kFPs�

−kF�� . �3.41�

Subsequently, we sum over s and s�, add and subtract 4��̄kF

2 �̄−kF

2 −2�2kF
2 sin 2
k�P0

2 inside the square brackets, and, after some
algebraic manipulations, obtain

��xx
�2� = − 2�mU

8�
�2

T�
�

�2� d
k

2�
� dqq

2�
�8P0

2 + a0P0�P+
−kF + P+

+kF + P−
−kF + P−

+kF − 4P0�

+ a+�P+
+kFP−

−kF + P+
−kFP−

+kF − 2P0
2� + a−�P−

−kFP−
+kF + P+

−kFP+
+kF − 2P0

2�� , �3.42�

where

a0 =
4�2kF

2�2 cos2 
k

�̄kF

2 �̄−kF

2
, �3.43�

a	 =
�4kF

4 + �4 − 2�2kF
2�2 sin2 
k 	 �̄kF

�̄−kF
��2kF

2 − �2�

�̄kF

2 �̄−kF

2
.

The first term in the square brackets in Eq. �3.42� does not

depend on the effective field �̄	kF
and can be dropped. The

remaining integrals over q are equal to

� dqqP0�P+
−kF + P+

+kF + P−
−kF + P−

+kF − 4P0�

=
1

vF
2 ln

�2

�2 + �̄kF

2
+

1

vF
2 ln

�2

�2 + �̄−kF

2
, �3.44�

� dqq�P+
+kFP−

−kF + P+
−kFP−

+kF − 2P0
2�

=
1

vF
2 ln

�2

�2 + ��̄kF
− �̄−kF

�2
, �3.45�

and

� dqq�P−
−kFP−

+kF + P+
−kFP+

+kF − 2P0
2�

=
1

vF
2 ln

�2

�2 + ��̄kF
+ �̄−kF

�2
. �3.46�

Evaluating the Matsubara sum in the same way as in
Sec. III B, we obtain

��xx
�2� = − 2� mU

8�vF
�2

T3� d
k

�2��2�a0�F� �̄kF

T
� + F� �̄−kF

T
�� + a+F� ��̄kF

− �̄−kF
�

T
� + a−F� �̄kF

+ �̄−kF

T
�� , �3.47�

where the function F�x� and its asymptotic limits are given
by Eqs. �3.25�–�3.27�.

The angular integral cannot be performed analytically be-
cause the function F�y� depends in a complicated way on the

angle 
k through �̄	kF
. Therefore, we consider two limiting

cases below.

1. Temperature dependence of �xx

First, we consider the limit of a weak magnetic field:
����max����kF ,T
. The main difference between the cases
of in- and transverse orientations of the field is in the term
proportional to a+ in Eq. �3.47�. The argument F in this term
vanishes in the limit of �→0, whereas the arguments of F in
the rest of the terms reduce to a scaling variable ���kF /T, as

it was also the case for the transverse field. Therefore, the
SOI energy scale, ���kF, and temperature are interchangeable
in the rest of the terms, which means that a nonanalytic T
dependence arising from these terms is cut off by the SOI
�and vice versa�. However, the a+ term does not depend on �
and produces a nonanalytic T dependence which is not cut
off by the SOI. To see this, we expand prefactors a0 and a	

to leading order in � as

a0 = 4
�2

�2kF
2 cos2 
k + O��4� ,

a+ = 2 − 4
�2

�2kF
2 cos2 
k + O��4� ,
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a− = 2
�4

�4kF
4 cos4 
k + O��6� . �3.48�

The last term in Eq. �3.47�, proportional to a−, does not con-
tribute to order �2, and we focus on the first two terms. In

the term a0, we replace �̄	kF
= ���kF in the argument of the F

function. In the a+ term, we replace ��̄kF
− �̄−kF

�
=2�� sin 
k�+O��2�, and then expand F�2�� sin 
k� /T�
=4�2 sin2 
k /T2 using Eq. �3.26�. Integrating over 
k and
differentiating the result twice with respect to B, we obtain

��xx
�2��T,�� = �0�mU

4�
�2� T3

�2kF
2 F� ���kF

T
� +

T

EF
�

=
1

2
�zz

�2��T,�� +
1

2
�0�mU

4�
�2 T

EF
, �3.49�

where �zz
�2��T ,�� is the correction to �zz given by Eq. �3.28�.

�Notice a remarkable similarity between Eq. �3.49� and the
relation between �xx and �zz in the noninteracting case, Eq.
�A5�.� Equation �3.49� is one of the main results of this pa-
per. It shows that a nonanalytic T dependence of �xx, given
by the stand-alone T /EF term, survives in the presence of the
SOI. Explicitly, the T dependence is

��xx
�2� = 2�0�mU

4�
�2� T

EF
+

�2kF
2

48TEF
� �3.50�

for T� ���kF and

��xx
�2� = 2�0�mU

4�
�2� ���kF

6EF
+

T

2EF
+ 2��3�

T3

�2kF
2EF

� �3.51�

for T� ���kF.
As it is also the case for the transverse magnetic field, the

first term in the second line of Eq. �3.50� is due to particle-
hole pairs formed by electrons from three identical and one
different Rashba branches. On the other hand, the linear-in-T
term, absent in ��zz

�2�, comes from processes involving elec-
trons from the different Rashba branches in each particle-
hole bubble, see Fig. 8�b�. Indeed, pairing electrons and
holes, which belong to different Rashba branches and move
in the same direction, we obtain particle-hole bubbles P	

	kF

�cf. Eq. �3.42��. The product of two such bubbles, P+
	kFP−

�kF,
being integrated over q and summed over �, depends on the

difference of the Zeeman energies ��̄kF
− �̄−kF

�. Since sin 
k

is odd upon k→−k, this difference is finite and proportional
to ��� for �→0 but does not depend on �. This is a mecha-
nism by which one gets an O��2� contribution to the ther-
modynamic potential and, therefore, a T dependent contribu-
tion to �xx, which does not involve the SOI.

2. Magnetic-field dependence of �xx

Now we analyze the nonlinear in-plane susceptibility
�xx�Bx ,��=−�2�xx /�Bx

2 at T=0. Replacing F in Eq. �3.47�
by its large-argument asymptotics from Eq. �3.27�, we obtain

��xx
�2� = −

2

3
� mU

8�vF
�2� d�kx

�2��2 �a0��̄kF

3 + �̄−kF

3 �

+ a+��̄kF
− �̄−kF

�3 + a−��̄kF
+ �̄−kF

�3
 . �3.52�

The angular integral can now be solved explicitly in the lim-
iting cases of ���� ���kF and ���� ���kF. Since our primary
interest is just to see whether a nonanalytic field-dependence
survives in the presence of the SOI, we will consider only
the weak-field case: ���� ���kF. The a− term in Eq. �3.52�
can then be dropped, while the a0 and a+ ones yield

��xx
�2��Bx,�� =

1

3
�0�mU

4�
�2� ���kF

EF
+

16

�

���
EF
� . �3.53�

The first term in Eq. �3.53� is just half of the first term in
��zz

�2� �cf. Eq. �3.37��. However, the second term represents a
nonanalytic dependence on the field which is not cut off by
the SOI.

D. Remaining second order diagrams

Besides the diagrams considered so far, there are other
second order diagrams, which—in principle—could contrib-
ute to the spin susceptibility. These diagrams are depicted in
Figs. 6�b�–6�e�. In the absence of the SOI, these diagrams
are irrelevant because the electron-electron interaction con-
serves spin. This means that the spins of electrons in each of
the bubbles in, e.g., diagram �b� are the same and, therefore,
the Zeeman energies, entering the Green’s functions, can be
absorbed into the chemical potential. The same argument
also goes for the other two diagrams. In the presence of the
SOI, this argument does not work because spin is not a good
quantum number and the interaction mixes states from all
Rashba branches with different Zeeman energies. However,
one can show that the net result is the same as without the
SOI: diagrams in Figs. 6�b�–6�e� do not contribute to the
nonanalytic behavior of the spin susceptibility. This is what
we are going to show in this section.

We begin with diagram �b�, which is a small momentum-
transfer counterpart of diagram in �a�,

��b
�2� = − U2�0�T�

Q

�Tr �̂�Q��2, �3.54�

where

�̂�Q� =
1

2�
K

Ĝ�K�Ĝ�K + Q�

=
1

2 �
s,t=	1

�̂s�̂t�
K

gs�K�gt�K + Q� �3.55�

is the full �summed over Rashba branches� polarization
bubble, and both the spacelike and timelike components of
Q��� ,q� are small. As it is also the case in the absence of
the SOI, the small-Q bubble does not depend on the mag-

netic field. Indeed, noticing that the matrix �̂ in Eq. �2.2a� has
the following properties:
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�̂2 = Î and Tr �̂ = 0, �3.56�

it is easy to show that

�̂s�̂t =
1

4
��1 + st�Î + �s + t��̂� . �3.57�

Consequently, �̂+�̂+=�̂−�̂−= �1 /2�Î and �̂+�̂−=�̂−�̂+=0.
Therefore, electrons from different branches do not contrib-

ute to �̂�Q�, while the Zeeman energies in the contributions
from the same branch can be absorbed into the chemical
potential. As result, the dynamic part of the bubble depends
neither on the field nor on the SOI �as long as a weak de-
pendence of the Fermi velocity for a given branch on � is
neglected�,

�̂�Q� = Î
m

2�

���
��2 + vF

2q2
. �3.58�

Therefore diagram �b� does not contribute to the spin suscep-
tibility. We remind the reader that, since there are no thresh-

oldlike singularities in the static polarization bubble �see dis-
cussion in Sec. III�, the Landau-damping singularity in Eq.
�3.58� is the only singularity which may have contributed to
a nonanalytic behavior of the spin susceptibility. However, as
we have just demonstrated, Landau damping is not effective
in diagrams with small momentum transfers.

Similarly, diagram �c� with two crossed interaction lines,
one of which carries a small momentum and the other one
carries a momentum near 2kF, is expressed via a small Q
bubble as

��c
�2� = − U�0�U�2kF��

Q

Tr��̂2�Q�� �3.59�

and, therefore, does not depend on the magnetic field. Dia-
gram �d�, with both interaction lines carrying small mo-
menta, contains a trace of four Green’s functions,

��d
�2� = −

U2�0�
4 �

Q,Q�,K

Tr�Ĝ�K�Ĝ�K + Q�Ĝ�K + Q + Q��Ĝ�K + Q��� �3.60�

=−
U2�0�

4 �
Q,Q�,K

�
p,r,s,t=	

Tr��̂p�̂r�̂s�̂t�gp�K�gr�K + Q�gs�K + Q + Q��gt�K + Q�� , �3.61�

where Q and Q� are small so that the dependence of �̂l on
either of the bosonic momenta can be neglected. Using again
the properties of the projection operator from Eq. �3.56�, we
find that

Tr��̂p�̂r�̂s�̂t� =
1

16
Tr���1 + pr��1 + st� + �p + r��s + t�
Î

+ ��1 + pr��s + t� + �1 + st��p + r�
�̂�

=
1

8
��1 + pr��1 + st� + �p + r��s + t�� .

�3.62�

This expression vanishes if at least one of the indices from
the set �p ,r ,s , t
 is different from the others. Therefore, only
electrons from the same branch contribute to ��d

�2�, the Zee-
man energy can again be absorbed into the chemical poten-
tial, and ��d

�2� does not depend on the magnetic field.
Finally, the last diagram, ��e

�2� corresponds to the first-
order self-energy inserted twice into the zeroth-order thermo-
dynamic potential. Such an insertion only shifts the chemical
potential and, for a q dependent U, gives a regular correction
to the electron effective mass but does not produce any
nonanalytic behavior.

IV. COOPER-CHANNEL RENORMALIZATION

A. General remarks

The second-order nonanalytic contribution to the spin sus-
ceptibility comes from “backscattering” processes in which
two fermions moving in almost opposite directions experi-
ence almost complete backscattering. Because the total mo-
mentum of two fermions is small, the backscattering process
is a special case of the interaction in the Cooper �particle-
particle� channel. Higher order processes in this channel lead
to logarithmic renormalization of the second-order
result.3,6–8,10,19–22,29,30 For a weak interaction, considered
throughout this paper, this is the leading higher-order effect.
In the absence of the SOI, resummation of all orders in the
Cooper channel leads to the following scaling form of the
spin susceptibility

�� �
E

ln2�E/
�
, �4.1�

where 
 is the ultraviolet cutoff and E�max�T , ���
 is small
enough so that mU�ln�E /
���1. As we see, both the
linear-in-E term, which occurs already at second order, and
its logarithmic renormalization contain the same energy
scale. The reason for this symmetry is very simple: an arbi-
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trary order Cooper diagram for the thermodynamic potential
contains two bubbles joined by a ladder. The spin suscepti-
bility is determined only by diagrams with opposite fermion
spins in each of the bubbles. Therefore, all Cooper bubbles in
such diagrams are formed by fermions with opposite spins so
that the logarithmic singularity of the bubble is cut off at the
largest of the two energy scales, i.e., temperature or Zeeman
energy. At zero incoming momentum and frequency, the
Cooper bubble is

�C
↑↓ =

m

2�
ln




max�T,�

. �4.2�

Hence the symmetry of the result with respect to interchang-
ing T and � follows immediately. It will be shown in this
section that this symmetry does not hold in the presence of
the SOI. The reason is that the Rashba branches are not the
states with definite spins, and diagrams with Cooper bubbles
formed by electrons from the same branches also contribute
to the spin susceptibility. Although a Cooper bubble formed
by electrons from branches s and s�

�C
s,s� = T�

�

m

2�
� d
p

2�
� d�pgs��,p�gs��− �,− p�

=
m

2�
ln




max�T, �s − s���̄kF



�4.3�

looks similar to that in the absence of the SOI �Eq. �4.2��, its

diagonal element �C
ss depends only on T even if T��̄kF

.
Therefore, for �=0, the Cooper logarithm in Eq. �4.1� will
depend only on T in the limit of T→0 while the energy E in

the numerator may be given either by T or by ���kF.

B. Third-order Cooper channel contribution to �zz

Is this section, we obtain the third-order Cooper channel
contribution to �zz. This calculation will help to understand
the general strategy employed later, in Secs. IV C 3 and
IV C 4, in resuming Cooper diagrams to all orders.

The third-order Cooper diagram for the thermodynamic
potential, depicted in Fig. 9, is given by

��zz
�3� =

U3

6 �
K,P,L,Q

Tr�ĜKĜPĜL�Tr�Ĝ−K+QĜ−P+QĜ−L+Q� .

�4.4�

First, we evaluate the traces Tr�ĜKĜPĜL�
=�rstBrstgr�K�gs�P�gt�L� with the coefficients

Brst � Tr��̂r�k��̂s�p��̂t�l�� =
1

4�̄k�̄p�̄l

��̄k�̄p�̄l + irst�2��k � p + p � l + l � k�z

+ rs��2k · p + �2��̄l + rt��2k · l + �2��̄p + st��2l · p + �2��̄k� . �4.5�

Since q is small and Brst is an even function of the fermionic
momenta,

Tr��̂r��− k + q��̂s��− p + q��̂t��− l + q��


 Tr��̂r��− k��̂s��− p��̂t��− l�� = Br�s�t�, �4.6�

and the thermodynamic potential becomes

��zz
�3� =

U3

6 �
K,P,L,Q

�
rst

�
r�s�t�

BrstBr�s�t�gr�K�gr��− K + Q�

�gs�P�gs��− P + Q�gt�l�gt��− L + Q� . �4.7�

Each pair of the Green’s functions with opposite momenta
forms a Cooper bubble, which depends logarithmically on
the largest of the two energy scales—temperature or the ef-

fective Zeeman energy, see Eq. �4.3�. The third-order contri-
bution contains one such logarithmic factor which can be
extracted from any of the three Cooper bubbles; this gives an
overall factor of -3,

��zz
�3� =

U3

2 �
K,P,Q

�
rst

�
r�s�t�

� d
kl

2�
BrstBr�s�t��C

t,t�

�gr�K�gr��− K + Q�gs�P�gs��− P + Q� , �4.8�

where 
kl���k , l�. With this procedure, the third-order dia-
gram reduces effectively to the second-order one, but with a
new set of coefficients. Since we already know that the
nonanalytic part of the second-order diagram comes from
processes with k
−p, the coefficient Brst �and its primed
counterpart� simplify significantly because k�p=0 and

K

P L

−K + Q

−P + Q −L + Q

U(|k − p|) U(|l − k|)

FIG. 9. The third-order Cooper-channel diagram for the thermo-
dynamic potential.
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p� l= l�k. Integrating over 
kl, we obtain

Arstr�s�t� �� d
kl

2�
BrstBr�s�t� =

1

16�̄kF

6
�− 2rstr�s�t��4kF

4�2 +
1

2
�rtr�t� + sts�t� − rts�t� − r�t�st��4kF

4�̄kF

2

+ �̄kF

2 ��̄kF

2 + �rs + rt + st��2 − rs�2kF
2���̄kF

2 + �r�s� + r�t� + s�t���2 − r�s��2kF
2�� , �4.9�

and

��zz
�3� =

U3

2 �
rst

�
r�s�t�

Arstr�s�t��C
t,t� �

K,P,Q
gr�K�gr��− K + Q�gs�P�gs��− P + Q� . �4.10�

The convolution of two Cooper bubbles in Eq. �4.10� can be rewritten via a convolution of two particle-hole bubbles by
relabeling Q→Q+K+ P,

�
K,P,Q

gr�K�gr��− K + Q�gs�P�gs��− P + Q� = �
Q

�
K

gr�K�gs��K + Q��
P

gs�P�gr��P + Q� = �
Q

�rs��Q��sr��Q� , �4.11�

where �s,s��Q� is a particle-hole bubble defined in Eq. �3.6�. Summing over the Rashba indices, integrating over the momen-
tum, and assuming that the Zeeman energy is the smallest energy in the problem, i.e., that ��max�T , ���kF
, we find

��zz
�3� = −

1

2�vF
2 �mU

4�
�3�2T3

�2kF
2 ��12F� ���kF

T
� − F�2���kF

T
��ln

T



+ �4F� ���kF

T
� + F�2���kF

T
��ln

max�T, ���kF




� ,

�4.12�

with F�y� given by Eq. �3.25�.
The asymptotic behavior of �zz for T� ���kF is computed

from Eq. �4.12�

��zz
�3� = 8�0�mU

4�
�3 T

EF
ln

T



�4.13�

and, as to be expected, ��zz
�3� scales as T ln T.

In the opposite limit of T� ���kF,

��zz
�3� =

2

3
�0�mU

4�
�3 ���kF

EF
�ln

T



+ 3 ln

���kF



�



2

3
�0�mU

4�
�3 ���kF

EF
ln

T



, �4.14�

since �ln�T /
��� �ln����kF /
��. As it was advertised in

Sec. IV A, the T ln T scaling at high temperatures is replaced
by the ���ln T scaling at low temperatures which implies that
the energy scales ���kF and T are not interchangeable.

C. Resummation of all diagrams in the Cooper channel

1. Scattering amplitude in the chiral basis

It is more convenient to resume the Cooper ladder dia-
grams in the chiral basis, in which the Green’s functions are
diagonal. Introducing Rashba spinors �k ,s�, we rewrite the
number-density operator as

$̂q = �
k

�
s1,s2

�k + q,s2�k,s1�ĉk+q,s2

† ĉk,s1
�4.15�

so that the Hamiltonian of the four-fermion interaction
becomes

Ĥint =
1

2�
q

U�q�$̂q$̂−q =
1

2 �
p,p�,k,k�

�
�si


%s1s2;s3s4

�1� �k,k�;p,p��ĉp�,s4

† ĉp,s3

† ĉk,s1
ĉk�,s2

, �4.16�
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where the effective scattering amplitude is defined by �cf.
Fig. 11�

%s1s2;s3s4

�1� �k,k�;p,p�� = U�k − p��p,s3�k,s1��p�,s4�k�,s2� .

�4.17�

In the absence of the magnetic field,

�k,s� =
1
�2

�− ise−i
k

1
� , �4.18�

where 
k���k , x̂�, and Eq. �4.17� gives31

%s1s2;s3s4

�1� �k,k�;p,p�� =
1

4
U�k − p��1 + s1s3ei�
p−
k��

��1 + s2s4ei�
p�−
k��� . �4.19�

In order to resum the ladder diagrams for the thermody-
namic potential to infinite order, we consider a skeleton dia-
gram depicted in Fig. 10, which is obtained from the second-
order diagram—shown in Fig. 6�a�—by replacing the bare
interaction U�q� with the dressed scattering amplitudes:
%s1s2;s3s4

�k ,−k+q ;p ,−p+q� and its time reversed counter-
part. The dressed amplitudes contain infinite sums of the
Cooper ladder diagrams shown in Fig. 11. We will be inter-
ested in the limit of vanishingly small magnetic fields and
temperatures smaller than the SOI energy scale: ��T
� ���kF. In this limit, the largest contribution to the ladder
diagrams comes from the internal Cooper bubbles formed by
electrons from the same Rashba subbands. Each “rung” of
this ladder contributes a large Cooper logarithm L
��m /2��ln�
 /T�, which depends only on the temperature,
and one has to select the diagrams with a maximum number
of L factors.

2. Renormalization group for scattering amplitudes

Resummation of Cooper diagrams is performed most con-
veniently via the RG procedure.8 In the Cooper channel, the
bare amplitude is given by Eq. �4.19� with p�=−p and k�
=−k or, equivalently, 
k�=
k+� and 
p�=
p+�,

%s1s2;s3s4

�1� �k,− k;p,− p� = Us1s2;s3s4

�1� + Vs1s2;s3s4

�1� ei�
p−
k�

+ Ws1s2;s3s4

�1� e2i�
p−
k�, �4.20�

where the three terms correspond to orbital momenta �
=0,1 ,2, respectively. The bare values of partial amplitudes
are given by

Us1s2;s3s4

�1� = U/4, �4.21a�

Vs1s2;s3s4

�1� = �U/4��s1s3 + s2s4� , �4.21b�

Ws1s2;s3s4

�1� = �U/4�s1s2s3s4. �4.21c�

Consider now a ladder diagram consisting of n interaction
lines and 2�n−1� internal fermionic lines, as shown in
Fig. 11. As we have already pointed out, in the limit
T� ���kF, the dominant logarithmic-in-T contribution origi-
nates from those Cooper bubbles which are formed by elec-
trons from the same Rashba branch. Therefore, the nth order
Cooper ladder can be written iteratively as

%s1s2;s4s3

�n� �k,− k;p,− p�

= − L�

l

�
s

%s1s2;ss
�n−1� �k,− k;l,− l�%ss;s3s4

�1� �l,− l;p,− p� ,

�4.22�

where n&2. Since only “charge-neutral” terms of the type
ei�
p−
l�ei�
l−
k� survive upon averaging over 
l, different par-
tial harmonics are renormalized independently of each other,
i.e., we have the following group property:

%s1s2;s3s4

�n� �k,− k;p,− p� = �− L�n−1�Us1s2;s3s4

�n� + Vs1s2;s3s4

�n� ei�
p−
k�

+ Ws1s2;s3s4

�n� e2i�
p−
k�� . �4.23�

Differentiating Eq. �4.22� for n=2 with respect to L we ob-
tain three decoupled one-loop RG flow equations,

−
d

dL
Us1s2;s3s4

�L� = �
s

Us1s2;ss�L�Uss;s3s4
�L� , �4.24a�

−
d

dL
Vs1s2;s3s4

�L� = �
s

Vs1s2;ss�L�Vss;s3s4
�L� , �4.24b�

−
d

dL
Ws1s2;s3s4

�L� = �
s

Ws1s2;ss�L�Wss;s3s4
�L� �4.24c�

with initial conditions specified by Us1s2;s3s4
�0�=Us1s2;s3s4

�1� ,

Vs1s2;s3s4
�0�=Vs1s2;s3s4

�1� , and Vs1s2;s3s4
�0�=Vs1s2;s3s4

�1� .
Solving this system of RG equations and substituting the

results into the backscattering amplitude,

K

P

−P + Q

−K + Q

s3

s1

s2

s4

Γ(|k− p|) Γ(|k − p|)

FIG. 10. A skeleton diagram for the thermodynamic potential
�.

K
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s2
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s4
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K
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s2

−K

L1

t1

t1

−L1

Ln−1

tn−1

tn−1

−Ln−1

P

s3

s4

−P

FIG. 11. Left: the effective scattering amplitude
%s1s2;s3s4

�1� �k ,k� ;p ,p�� in the chiral basis. Right: a generic nth order
ladder diagram in the Cooper channel, %s1s2;s3s4

�n� �k ,−k ;p ,−p�.
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%s1s2;s3s4
�k,− k;− k,k� = Us1s2;s3s4

�L� − Vs1s2;s3s4
�L�

+ Ws1s2;s3s4
�L� , �4.25�

which is a special case of the Cooper amplitude for p=−k,
we obtain

%ss;	s	s�k,− k;− k,k� =
U

2 + UL
�

U

2�1 + UL�
,

�4.26�

%s−s;�s	s�k,− k;− k,k� =
U

2 + UL
	

U

2
, �4.27�

%��	�;����k,− k;− k,k� = 0, �4.28�

where ��s1s2 ;s3s4����s1s2 ;s3s4� , �s2 ,s3 ;s4s1� , �s3 ,s4 ;s1s2� ,
�s4 ,s1 ;s2 ,s3�
 stands for all cyclic permutations of indices.

We see that the RG flow described by Eqs. �4.24a�,
�4.24b�, and �4.24c� has a nontrivial solution: whereas the
amplitudes in Eqs. �4.26� and �4.28� flow to zero in the limit
of L→ , the amplitudes in Eq. �4.27� approach RG-
invariant values of 	U /2. This behavior is in a striking con-
trast to what one finds in the absence of the SOI, when the
repulsive interaction is renormalized to zero in the Cooper
channel. Notice that we consider only the energy scales be-
low the SOI energy, while the conventional behavior is re-
covered at energies above the SOI scale.

The scattering amplitudes can be also derived by iterating
Eq. �4.22� directly. Examining a few first orders, one recog-
nizes the pattern for the nth order partial amplitudes to be

%ss;	s	s
�n� �k,− k;− k,k� = Un�− L�n−11 � 2n−1

2n , �4.29�

%s−s;�s�s
�n� �k,− k;− k,k� = Un�− L�n� 1

2n 	
1

2
�n,1� ,

�4.30�

%��	�;���
�n� �k,− k;− k,k� = 0. �4.31�

Summing these amplitudes over n, one reproduces the RG
result.

3. Renormalization of �zz

The infinite-order result for the thermodynamic potential
is obtained by replacing the bare contact interaction U by its
“dressed” counterpart % in the second-order skeleton dia-
gram Fig. 10,

��zz = −
1

4�
Q

�
�si


%s1s4;s3s2
�k,− k;− k,k�

�%s3s2;s1s4
�− k,k;k,− k��s1s2

�s3s4
, �4.32�

with %s3s4;s1s2
�−k ,k ;k ,−k�=%s1s2;s3s4

�k ,−k ;−k ,k�.
Now, we derive the asymptotic form of ��zz valid in the

limit of strong Cooper renormalization, i.e., for UL�1. In
this limit, the only nonvanishing scattering amplitude is
given by Eq. �4.27�. Replacing the full % by its RG-invariant
asymptotic limit %s−s;�s	s�k ,−k ;−k ,k�= 	U /2, we obtain

��zz = −
U2

16
T�

�
� qdq

2�
���+−

2 + �−+
2 − 2�0

2� + 4�0
2� .

�4.33�

In contrast to the perturbation theory, where the magnetic-
field dependence of the thermodynamic potential was pro-
vided by the vertices while the polarization bubbles supplied
the dependence on the temperature and on the SOI, the ver-
tices in the nonperturbative result �4.33� depend neither on
the field nor on the SOI. Therefore, the dependences of � on
all three parameters �B, T, and �� must come from the po-
larization bubbles. The integral over q along with the sum
over the Matsubara frequency � have already been per-
formed in Sec. III. Note that the last term in square brackets
�proportional to �0

2� does not depend on the magnetic field
and thus can be dropped. The final result reads

��zz = −
T3

8�vF
2 �mU

2�
�2

F�2�̄kF

T
� �4.34�

so that

��zz =
�0

2
�mU

4�
�2 ���kF

EF
, �4.35�

where use was made of the expansion

�2

��2F�2�̄kF

T
� 


2

���kFT
F��2���kF

T
� �4.36�

and made use of the asymptotic form �3.27� of the function
F to find that F��x�
x2 for x�1. Comparing the nonpertur-
bative and second-order results for �zz �given by Eqs. �4.35�
and �3.30�, respectively�, we see that the only effect of Coo-
per renormalization is a change in the numerical coefficient
of the nonanalytic part of �zz. This is a consequence of a
nontrivial fixed point in the Cooper channel which corre-
sponds to finite rather than vanishing Coulomb repulsion.

The temperature dependence of �zz can be also found for
an arbitrary value of the Cooper renormalization parameter
UL. Deferring the details to Appendix C 1, we present here
only the final result

��zz = �0
2���kF

EF
�mU

4�
�2�� 1

2 + UL
−

1

2
�2

+
1

3
� 1

2�1 + UL�
+

1

2 + UL
�2

+
4

3
� 1

2�1 + UL�
−

2

�2 + UL�2 +
2

2 + UL
�� 1

2 + UL
−

1

2
�� .

�4.37�
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In the limit of strong renormalization in the Cooper channel,
i.e., for UL�1, only the first term survives the logarithmic
suppression, and Eq. �4.37� reduces to Eq. �4.35�. In the
absence of Cooper renormalization, i.e., for L=0, Eq. �4.37�
reduces to the second-order result �3.30�. In between these
two limits, ��zz is a nonmonotonic function of UL: as shown
in Fig. 12, ��zz exhibits a �shallow� minimum at UL
2.1. In
a wide interval of UL �0.9�UL�5.6�, the sign of ��zz is
opposite �negative� to that in either of the high- and low-
temperature limits. It is also seen from this plot that the
low-T asymptotic value �marked by a straight line� is reached
only at very large �'100� values of UL.

4. Renormalization of �xx

The second-order result for the in-plane magnetic field is
renormalized in a similar way with two exceptions. First,
because the Zeeman energy is anisotropic in this case—the

effective magnetic field �̄	kF
�
l�

���2kF
2 	2�kF� sin 
l+�2 depends on the direction of the

electron momentum l with respect to the field

l���l ,B�—integration in the rungs of the Cooper ladder
can be performed only over the fermionic frequency and the
magnitude of the electron momenta �or, equivalently, the
variable �l�. Consequently, the elementary building block of
the ladder

L�
l� = T�
�

m

2�
� d�lgt��,l�gt��− �,− l�

=
m

2�
ln




max�T, �t�̄kF
�
l� − t��̄−kF

�
l��

�4.38�

depends on 
l.
In principle, the dependence of L on the angle 
l should

be taken into account when averaging over 
l. However, in
the limit of ��T� ���kF, the angle-dependent term under

the logarithm can be approximated as �t�̄kF
�
l�− t��̄−kF

�
l��

�t− t�����kF and, as it was also the case for �zz, L
= �m /2��ln�
 /T� provided that t= t�.

Second, the particle-hole bubbles also depend on the di-
rection of the electron momentum, hence, the infinite-order
result for the thermodynamic potential is found again by re-
placing the bare interaction U in the second-order diagram

by %s1s2;s3s4
�
k� and retaining the angular dependence of the

bubbles.
The RG equations for the in-plane magnetic field are con-

siderably more complicated. The main difference is that even
the RG-invariant terms depend on the magnetic field. A de-
tailed discussion of Cooper renormalization of the scattering
amplitudes and spin susceptibility for this case is given in
Appendices C 2 a and C 2 b, respectively. Below, we only
show the final result for the renormalized spin susceptibility

��xx =
�0

3
�mU

4�
�2 ���kF

EF
+ O� T

ln T
� . �4.39�

The T-independent term is the same as without the Cooper
renormalization �cf. Eq. �3.51��. The linear-in-T term how-
ever is suppressed by at least a factor of 1 / ln T, similar to the
case of no SOI, where it is suppressed by a ln2 T factor.

V. SUMMARY AND DISCUSSION

We have considered a two-dimensional electron liquid in
the presence of the Rashba SOI. The main result of this paper
is that the combined effect of the electroelectron and spin-
orbit interactions breaks isotropy of the spin response,
whereas either of these two mechanisms does not. Namely,
nonanalytic behavior of the spin susceptibility, as manifested
by its temperature—and magnetic-field dependences, studied
in this paper, is different for different components of the
susceptibility tensor: whereas the nonanalytic behavior of �zz
is cut off at the energy scale associated with the SOI �given
by ���kF for the Rashba SOI�, that of �xx �and �yy =�xx� con-
tinues through the SOI energy scale. The reason for this dif-
ference is the dependence of the SOI-induced magnetic field
on the electron momentum. If the external magnetic field is
perpendicular to the plane of motion, its effect is simply dual
to that of the SOI field: the T dependence of �zz is cut by
whichever of the two fields is larger. If the external field is in
the plane of motion, it is always possible to form a virtual
particle-hole pair, which mediates the long-range interaction
between quasiparticles, from the states belonging to the same
Rashba branch. The energy of such a pair depends on the
external but not on the effective field so that the SOI effec-
tively drops out of the result. We have also studied a nonper-
turbative renormalization of the spin susceptibility in the
Cooper channel of the electron-electron interaction. It turns
out the RG flow of scattering amplitudes is highly nontrivial.
As a result, the spin susceptibility exhibits a nonmonotonic
dependence on the Cooper-channel renormalization param-
eter �ln T� and eventually saturates as a temperature-
independent value, proportional to the SOI coupling ���.

Notably, all the results of the paper are readily applicable
to the systems with large Dresselhaus SOI and negligible
Rashba SOI. In this case the Rashba spin-orbit coupling
should be simply replaced by the Dresselhaus spin-orbit
coupling.

Now we would like to discuss possible implications of
these results for �in�stability of a second-order ferromagnetic
quantum critical point �QCP�. This phenomenon depends
crucially on the sign of the nonanalytic correction. In this

5 10 15
UL

� ���1
4

���1
4

���1
2

���3
4

1
∆Χzz�∆Χzz

�2�

FIG. 12. �Color online� Nonanalytic part of �zz, normalized by
the second-order result �3.30� as a function of the Cooper-channel
renormalization parameter UL= �Um /2��ln�
 /T�. The horizontal
line marks the low-temperature limit.
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regard, we should point out that we limited our analysis to
the simplest possible model, which does not involve the
Kohn-Luttinger superconducting instability and higher-order
processes in the particle-hole channel. Therefore, the sign of
our nonanalytic correction is “anomalous,” i.e., the spin sus-
ceptibility increases with the corresponding energy scale. As
in the absence of the SOI, however, either of these two ef-
fects �Kohn-Luttinger and particle-hole� can reverse the sign
of nonanalyticity. Therefore, it is instructive to consider con-
sequences of both signs.

In the absence of the SOI, a nonanalyticity of the anoma-
lous sign renders a second-order ferromagnetic QCP unstable
with respect to either a first-order phase transition or a tran-
sition into a spiral state.3,4 This result was previously be-
lieved to be relevant only to systems with a SU�2� symmetry
of electron spins; in particular, it was shown in Ref. 5�b� that
there is no nonanalyticity in � for a model case of the Ising-
like exchange interaction between electrons. We have shown
here that broken �by the SOI� SU�2� symmetry is not suffi-
cient for eliminating a nonanalyticity in the in-plane compo-
nent of the spin susceptibility ��xx�. Based on our results for
the magnetic-field dependence of �zz and �xx �cf. Eqs. �3.37�
and �3.53��, we can construct a model form for the free en-
ergy as a function of the magnetization M. The most inter-
esting case for us is the one in which the Zeeman energy due
to spontaneous magnetization, �M /m�B is larger than the
SOI energy scale ���kF so that �xx��zz. Ignoring Cooper-
channel renormalization, we can write the free energy as

F = aM2 − b��Mx�3 + �My�3� + M4, �5.1�

where M = �Mx
2+My

2+Mz
2�1/2 and the coefficient of the quartic

term was absorbed into the overall scale of F, which is irrel-
evant for our discussion. An important difference of this free
energy, compared to the case of no SOI, is easy-plane aniso-
tropy of the nonanalytic, cubic term. In the absence of the
cubic term �b=0�, a second-order quantum phase transitions
occurs when a=0; in the paramagnetic phase, a is positive
but small near the QCP. Since � is isotropic at the mean-field
level �cf. Eq. �2.8��, the regular, M2 and M4 terms in Eq.
�5.1� are isotropic as well. If b�0 �which corresponds to the
anomalous sign of nonanalyticity�, the cubic term leads to a
minimum of F at finite M; when the minimum value of F
reaches zero, the states with zero and finite magnetization
become degenerate, and a first-order phase transition occurs.
The first-order critical point is specified by the following
equations

�F

�Mz
= 0,

�F

�Mx
= 0,

�F

�My
= 0, and F = 0. �5.2�

For a�0, the only root of the first equation is Mz=0, i.e.,
there is no net magnetization in the z direction. Substituting
Mz=0 into the remaining equations and employing in-plane
symmetry �Mx=My�, we find that the first-order phase tran-
sition occurs at a=b2 /8. The broken-symmetry state is an XY
ferromagnet with spontaneous in-plane magnetization Mx

�c


=My
�c
=b /4. The first-order transition to an XY ferromagnet

occurs if the Zeeman energy, corresponding to a jump of the
magnetization at the critical point, is larger than the SOI

energy, i.e., Mx
�c
 /m�B� ���kF. In the opposite case, the SOI

is irrelevant, and the first-order transition is to a Heisenberg
ferromagnet.

If the nonanalyticity is of the “normal” sign �b�0�, the
transition remains second order and occurs at a=0. However,
the critical indices are different for the in-plane and trans-
verse magnetization: in the broken-symmetry phase �a�0�,
Mx=My � �−a� while Mz� �−a�1/2. Since �a��1, the resulting
state is an Ising-like ferromagnet with Mz�Mx=My.

A detailed study of the �q� dependence of � in the pres-
ence of the SOI will be presented elsewhere.24
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APPENDIX A: TEMPERATURE DEPENDENCE OF THE
SPIN SUSCEPTIBILITY OF FREE RASHBA

FERMIONS

In this appendix, we consider the temperature dependence
of the spin susceptibility of free 2D electrons in the presence
of the Rashba SOI. The transverse and parallel spin suscep-
tibilities, �zz

�0
 and �xx
�0
, are given by

�zz
�0
 = − �

K

Tr�Ĝ�K��̂zĜ�K���̂z� , �A1�

�xx
�0
 = − �

K

Tr�Ĝ�K��̂xĜ�K���̂x� , �A2�

where K= �� ,k� and K�= �� ,k+q� with q→0. Evaluating
the traces, we obtain for �zz

�0


�zz
�0
 = − T�

�
� d2k

�2��2�
s,t

1

2
�1 − st�gs��,k�gt��,k�

= − 2T�
�
� dkk

2�
g+��,k�g−��,k� , �A3�

where we took advantage of the isotropy of g	�� ,k� and put
q=0 because the poles in the Green’s functions of different
branches reside on opposite sides of the real axis. We see that
�zz

�0
 is determined only by intersubband transitions. Simi-
larly, we obtain for �xx

�0
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�xx
�0
 = − T�

�
� d2k

�2��2�
s,t

1

2
�1 − st cos�2
k��gs���,k�gt��,k + q��q→0. �A4�

Since cos 
k averages to zero, �xx
�0
 can be written as

�xx
�0
 =

1

2
�zz

�0
 +
1

2
��xx

�0
, �A5�

where

��xx
�0
 � − T�

�
� d2k

�2��2��g+��,k�g+��,k + q� + g−��,k�g−��,k + q���q→0 �A6�

is the contribution from intrasubband transitions, absent in �zz
�0
.

Let us evaluate �zz
�0
 first. Performing the fermionic Matsubara sum, we obtain

�zz
�0
 = − 2�

0

 kdk

2�
T�

�

1

2�k
� 1

i� − �k − �k
−

1

i� − �k + �k
� =

1

2��
�

0

 

dk�nF��k − �k� − nF��k + �k�� , �A7�

with a Fermi function nF���= �e��−��/T+1�−1 and �k=k2 /2m−�. Changing variables in the first integral to �k−�k=�−−�, we
find two roots: k−

�1�=m�−��m��2+2m�−, valid for −�0��−�0 with dk−
�1� /d�−�0, and k−

�2�=m�+��m��2+2m�−, valid for
�−�0 with dk−

�2� /d�−�0, where �0�m�2 /2. Similarly, we change variables in the second integral to �k+�k=�+−� and obtain
only one positive root k+=−m�+��m��2+2m�+, valid for �+�0 with dk+ /d�+�0. Notice that the absolute values of the
�inverse� group velocities are the same for both branches: �dk−

�1,2� /d�−�= �dk+ /d�+�=m��m��2+2m�	�−1/2. Therefore,

�zz
�0
 =

1

2����−�0

0

d��dk−
�1�

d�
� + �

0

 

d��dk−
�2�

d�
� − �

0

 

d��dk+

d�
��nF��� =

m

2��
�

−�0

0

d�
nF���

��m��2 + 2m�
, �A8�

where we dropped the index on the integration variable �. Notably, the high energy contributions from the two Rashba
branches cancel each other for any value of the chemical potential and the spin susceptibility is determined exclusively by the
bottom part of the lower Rashba branch. Integration by parts yields

�zz
�0
 = �0�nF�0� − �

−�0

0

d��1 +
�

�0

�nF���
��

� , �A9�

where nF�0�= �e−�/T+1�−1. In order to evaluate this integral, it is convenient to consider three limiting cases.
For T��0��, i.e., when both Rashba subbands are occupied and the temperature is lower than the minimum of the lower

subband, we approximate nF�0�
1−e−�/T, −T�nF��� /��
e��−��/T, and �1+� /�0
1+� /2�0 so that

�zz
�0
 = �0��1 − e−�/T� +

1

T
e−�/T�

0

 

d��1 −
�

2�0
�e−�/T� = �0�1 −

T

2�0
e−�/T� . �A10�

At T=0, �zz
�0
=�0.

For �0�T��, i.e., when again both Rashba subbands are occupied but the temperature is higher than the minimum of the
lower subband, we keep the same approximations for nF�0� and −T�nF��� /�� but neglect the � dependence of the Fermi
function in the integrand,

− �
−�0

�0


d��1 +
�

�0

�nF���
��



1

T
e−�/T�

0

�0

d��1 +
�

�0
e−�/T 


1

T
e−�/T�

0

�0

d��1 +
�

�0
=

2�0

3T
e−�/T. �A11�
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Thus,

�zz
�0
 = �0�1 − �1 −

2�0

3T
�e−�/T� . �A12�

Finally, for ��0, i.e., when only the lower Rashba sub-
band is occupied, the first term in Eq. �A9� gives only an
exponentially weak temperature dependence, while the Som-
merfeld expansion of the second term generates a T2 contri-
bution because the density of states depends on �,

�zz
�0
 = �0��1 − ���/�0 −

�2

24
� T

�0
�2 1

�1 − ���/�0�3/2� .

�A13�

At zero temperature, �zz
�0
=�0

�1− ��� /�0 vanishes at the bot-
tom of the lower subband.

We now calculate ��xx
�0
 given by Eq. �A6�, which can be

written as

��xx
�0
 = − �

0

 dkk

2�
� �nF��−�

��−
+

�nF��+�
��+

� . �A14�

The change of variables is straightforward in the second in-
tegral since the equation �+−�=�k+�k has only one positive
root k+ and the density of states is given by

�+��� =
k+

2�

dk+

d�
=

m

2�

�1 + �/�0 − 1
�1 + �/�0

, �A15�

with �0�m�2 /2. In the first integral more care must be
taken: for ��0, we have k−

�2�=m�+��m��2+2m� and the
density of states is given by

�−
���� =

k−
�2�

2�

dk−
�2�

d�
=

m

2�

�1 + �/�0 + 1
�1 + �/�0

; �A16�

however, for −�0���0 both roots enter the density of states

�−
���� = �

0

 kdk

2�
��� − �−� =

1

2�
�k−

�1��dk−
�1�

d�−
� + k−

�2��dk−
�2�

d�−
��

=
m

�

1
�1 + �/�0

. �A17�

Summing up the contributions from all energies, we find

��xx
�0
 = ��

−�0

0

d��−
���� + �

0

 

d��−
���� + �

0

 

d��+����
��−

�nF���
��

� = �
−�0

0

d��−
�����−

�nF���
��

� + �0nF�0� ,

�A18�

where the second and third integrals are easily evaluated be-
cause � drops out of the sum �++�−

�=m /�. Combining the
above result with Eqs. �A2� and �A8�, we get

�xx
�0
 = �0�nF�0� − �

−�0

0

d�
1 + �/2�0

�1 + �/�0

�nF���
�� � . �A19�

For T��0��, we approximate nF�0�
1−e−�/T and
−T�nF��� /��=e��−��/T�e��−��/T+1�−2
e��−��/T as before and
expand �1+� /2�0� /�1+� /�0
1+�2 /8�0

2 so that

�xx
�0
 = �0�nF�0� +

1

T
e−�/T�

0

 

d��1 +
�2

8�0
2�e−�/T�

= �0�1 +
T2

4�0
2e−�/T� . �A20�

For �0�T��, we keep the same approximations for the
Fermi function but, as it was also the case for �zz

�0
, neglect
the � dependence of the Fermi function in the integrand,

− �
−�0

0

d�
1 + �/2�0

�1 + �/�0

�nF���
��



1

T
e−�/T�

0

�0

d�
1 − �/2�0

�1 − �/�0

e−�/T 

1

T
e−�/T�

0

�0

d�
1 − �/2�0

�1 − �/�0

=
4�0

3T
e−�/T. �A21�

Thus,

�xx
�0
 = �0�1 − �1 −

4�0

3T
�e−�/T� . �A22�

Finally, for ��0, the Sommerfeld expansion of the second
term in Eq. �A19� yields

�xx
�0
 = �0� 1 − ���/2�0

�1 − ���/�0�1/2 +
�2

48
� T

�0
�2 2 + ���/�0

�1 − ���/�0�5/2�
�A23�

for T�min���� ,�0− ���
. At zero temperature, �xx
�0
=�0�1

− ��� /2�0� / �1− ��� /�0�1/2 diverges at the bottom of the lower
subband.
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APPENDIX B: ABSENCE OF A SMALL-q SINGULARITY
IN THE STATIC POLARIZATION BUBBLE WITH

SPIN-ORBIT INTERACTION

In Secs. III and III D, we argued that there is no contri-
bution to the nonanalytic behavior of the spin susceptibility
from the region of small bosonic momenta, q�kF. This
statement contradicts Ref. 32 where it was argued that, in the
presence of the SOI, a static particle-hole bubble has a
square-root singularity at q=q0�2m� �in addition to the
Kohn anomaly which is also modified by the SOI�. For a
weak SOI, q0 is much smaller than kF and thus the region of
small q may also contribute to the nonanalytic behavior.
Later on, however, Refs. 28 and 33 showed that there is no
singularity at q=q0. According to Ref. 28, the reason is re-
lated to a subtlety in approaching the static limit of a dy-
namic bubble. While we agree with the authors of Refs. 28 in
that there are no small-q singularities in the bubble, we find
that a cancellation of singular terms occurs in the calculation
of a purely static bubble. The same result was obtained in an
unpublished work.34 For the sake of completeness, we
present our derivation in this appendix.

Evaluating the spin trace, we obtain for the static polar-
ization bubble

��q� � �
K

Tr�Ĝ�,k+qĜ�,k�

=
1

2�
K

�
s,t

�1 + st cos��k+q − �k��gs��,k + q�gt��,k� ,

�B1�

where, as before, K= �� ,k�, �k+q���k+q ,ex� and �k
���k ,ex�. We divide ��q� into intrasubband and intersub-
band contributions as

��q� = �++�q� + �−−�q� + �	�q� , �B2�

where

�		�q� �
1

2�
K

�1 + cos��k+q − �k��g	��,k + q�g	��,k� ,

�B3a�

�	�q� �
1

2�
K

�1 − cos��k+q − �k���g+��,k + q�g−��,k�

+ g−��,k + q�g+��,k��

= �
K

�1 − cos��k+q − �k��g+��,k + q�g−��,k� .

�B3b�

In the last line, we employed obvious symmetries of the
Green’s function.

First, we focus on the intersubband part, �	�q�. Summa-
tion over the Matsubara frequency yields

T�
�

g+�p,��g−�k,�� =
nF��p

+� − nF��k
−�

�p
+ − �k

− , �B4�

where p=k+q, �k
	=�k	�k and, as before, �k=k2 /2m−EF.

Introducing additional integration over the momentum p, as
it was done in Ref. 32, Eq. �B3b� can be rewritten as

�	�q� =
2

�2��2�
0

2�

d
�
0

 

dkk�
0

 

dpp��p2 − �k + q�2�

��1 −
k · �k + q�

kp
�nF��p

+� − nF��k
−�

�p
+ − �k

− , �B5�

where 
=��k ,q�. Integration over 
 yields

�
0

2�

d
��p2 − k2 − q2 − 2kq cos 
��1 −
k2 + kq cos 


kp
�

=
1

kp

q2 − �k − p�2

��k + q�2 − p2�p2 − �k − q�2
, �B6�

which imposes a constraint on the range of integration over
p, i.e., �k−q�� p�k+q. Since we assume that q�k
 p

kF, Eq. �B6� can be simplified to

�q2 − �k − p�2

2kF
3 , �B7�

and �	�q� becomes

�	�q� =
1

4�2kF
3�

0

 

dkk�
�k−q�

k+q

dpp�q2 − �k − p�2

�
nF��p

+� − nF��k
−�

�p
+ − �k

− . �B8�

For a weak SOI �m����kF�, �k
	
�k	�kF. Switching from

integration over k and p to integration over �k and �p, we find

�	�q� =
1

4�2vF
3kF
�

− 

 

d�k�
�k−vFq

�k+vFq

d�p
��vFq�2 − ��k − �p�2nF��p + �kF� − nF��k − �kF�

�p − �k + 2�kF
. �B9�

Shifting the integration variables as �p→�p−�kF, �k→�k+�kF, we eliminate the dependence of the Fermi functions on �kF.
Assuming also that T=0, we obtain
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�	�q� =
1

4�2vF
3kF
�

− 

 

d�k�
�k+2�kF−vFq

�k+2�kF+vFq

d�p
��vFq�2 − ��p − �k − 2�kF�2!�− �p� − !�− �k�

�p − �k
, �B10�

where !�x� is the step function. Notice that the integrand is finite only if �k�p�0, which imposes further constraints on the
integration range.

We will now prove that �	�q� given by Eq. �B10� is continuous at q=q0. To this end, it is convenient to consider the cases
of q�q0 and q�q0. Combining all the constraints together, we find that �	 for q�q0 can be written as

�	
��q� � �	�q � q0� = −

1

4�2vF
3kF

��
−vFq−2�kF

vFq−2�kF

d�k�
0

�k+2�kF+vFq

d�p

+ �
vFq−2�kF

0

d�k�
�k+2�kF−vFq

�k+2�kF+vFq

d�p���vFq�2 − ��p − �k − 2�kF�2

�p − �k
, �B11�

Reversing the sign of �k, absorbing �k into �p, and defining the dimensionless variables x=�k /vFq and y=�p /vFq, we obtain

�	
��q� = −

q2

4�2vFkF
��

(−1

(+1

dx�
x

(+1

dy + �
0

(−1

dx�
(−1

(+1

dy��1 − �y − (�2

y
, �B12�

where (�q0 /q�1. Next, we switch the order of integration in the first term, so that the integrals over x can be readily
evaluated

�	
��q� = −

q2

4�2vFkF
�

(−1

(+1

dy��
(−1

y

dx + �
0

(−1

dx��1 − �y − (�2

y

= −
q2

4�2vFkF
�

(−1

(+1

dy�1 − �y − (�2 = −
m

2�
� q

2kF
�2

. �B13�

For q�q0, we have

�	
��q� � �	�q � q0� =

1

4�2vF
3kF

��
0

vFq−2�kF

d�k�
�k+2�kF−vFq

0

d�p − �
−vFq−2�kF

0

d�k�
0

�k+2�kF+vFq

d�p���vFq�2 − ��p − �k − 2�kF�2

�p − �k
.

�B14�

Manipulations similar to those for the previous case yield

�	
��q� = −

q2

4�2vFkF
��

0

1−(

dx�
x

1−(

dy
�1 − �y + (�2

y
+ �

0

1+(

dx�
x

1+(

dy
�1 − �y − (�2

y � , �B15�

with (=q0 /q�1. Interchanging the order of integrations over x and y, we find

�	�q � 2m�� = −
q2

4�2vFkF
��

0

1−(

dy�1 − �y + (�2 + �
0

1+(

dy�1 − �y − (�2� = −
m

2�
� q

2kF
�2

. �B16�

Since �	
��q=q0−0+�=�	

��q=q0+0+�, the function �	�q�=−�m /2���q /2kF�2 is continuous at q=q0 and, thus, there is no
singularity in the static particle-hole response function. In addition, �	�q� does not depend on the SOI. However, since there
is no q2 term in the 2D bubble for q�2kF in the absence of the SOI, the q2 term must be canceled out by similar terms in
�++�q� and �−−�q�, which is what we will show below.

Having proven that �	�q� is an analytic function of q, we can rederive its q dependence simply by expanding the
combination �k+q−�k in Eq. �B3b� for q�kF as �k+q−�k
�q /kF�sin �kq, where �kq���k ,q�; then 1−cos��k+q−�k�

�q /kF�2 sin2��kq� /2. Since we already have a factor of q2 up front, the Green’s functions in Eq. �B3b� can be evaluated at
q=0. Accordingly, Eq. �B3b� becomes

�	�q� =
1

2
� q

kF
�2

�
K

sin2 �kqg+�k,��g−�k,�� =
m

2�
� q

2kF
�2� d�k

nF��k
+� − nF��k

−�
�k

+ − �k
−

= −
m

2�
� q

2kF
�2�

−�kF

�kF

d�k
1

2�kF
= −

m

2�
� q

2kF
�2

. �B17�

Expanding Eq. �B3a� for the intraband contribution to the bubble also to second order in q, we obtain
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�		�Q� = �
K

g	�k + q,��g	��k,���q→0 −
1

4
� q

kF
�2

�
K

sin2 �kqg	�k + q,��g	��k,���q→0 = −
m

2�
+

m

4�
� q

2kF
�2

, �B18�

since

�
K

g	�k + q,��g	��k,���q→0 = − m� d�k

2�
�!��k+q

	 � − !��k
	�

�k+q
	 − �k

	 �
q→0

= − m� d�k

2�
���k 	 ���kF� = −

m

2�
. �B19�

Thereby the total bubble �B2�

��q� = −
m

�
�B20�

is independent of q for q�2kF.

APPENDIX C: RENORMALIZATION OF THE SCATTERING AMPLITUDES IN THE COOPER CHANNEL
IN THE PRESENCE OF THE MAGNETIC FIELD

In this appendix, we present the derivation of the RG flow equations for the scattering amplitudes in the Cooper channel in
the presence of the magnetic field. These amplitudes are then used to find the nonperturbative results for the spin susceptibility.
Since the amplitudes are renormalized quite differently for the field applied perpendicularly and parallel to the 2DEG plane, we
will treat these two cases separately.

1. Transverse magnetic field

a. RG flow of the scattering amplitudes

If the magnetic field is transverse to the 2DEG plane, B=Bez, the eigenvectors of Hamiltonian �1.1� read

�k,s� =
1

�Ns�k�
��� − s�̄k�ie−i
k/�k

1
� , �C1�

where Ns�k�=2+2���−s�̄k� / ��k�2 is the normalization factor and, as before, �̄k���2+�2k2�−1/2 is the effective Zeeman

energy. Since, by assumption, ���kF�EF, we approximate �̄k by �̄kF
. Substituting the above eigenvectors into Eq. �4.17�, we

find the scattering amplitude

%s1s2;s4s3

�1� �k,k�;p,p�� = U��
i=1

4
1

�2 +
2��� − si�̄kF

�

�2kF
2

��1 +
1

�2kF
2 �� − s1�̄kF

��� − s3�̄kF
�ei�
p−
k��

��1 +
1

�2kF
2 �� − s2�̄kF

��� − s4�̄kF
�ei�
p�−
k��� . �C2�

To find the spin susceptibility, we need to know the scattering amplitude to second order in the magnetic field. Expanding Eq.
�C2� to second order in ��� / ���kF �note that si

2=1 and si
3=si� and projecting the amplitude onto the Cooper channel, where

the momenta are correlated in such a way that k�=−k and p�=−p or, equivalently, 
k�=
k+� and 
p�=
p+�, we obtain

%s1s2;s3s4

�1� �k,− k;p,− p� = Us1s2;s3s4
+ Vs1s2;s3s4

ei�
p−
k� + Ws1s2;s3s4
e2i�
p−
k�, �C3�

where we introduced partial amplitudes

Us1s2;s3s4
=

U

4
+

U

8
�s1 + s2 + s3 + s4�� +

U

16
�s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4 − 2��2 + O��3� , �C4�

Vs1s2;s3s4
=

U

4
�s1s3 + s2s4� +

U

8
�s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 − s1 − s2 − s3 − s4��

+
U

8
�1 − s1s2 − s2s3 − s3s4 − s1s4 − s1s3 − s2s4 + s1s2s3s4��2 + O��3� , �C5�
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Ws1s2;s3s4
=

U

4
s1s2s3s4 −

U

8
�s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4��

+
U

16
�s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4 − 2s1s2s3s4��2 + O��3� . �C6�

For �=0, the partial amplitudes reduce back to Eqs. �4.21a�,
�4.21b�, and �4.21c�. The RG flow equations for the partial
amplitudes are the same as in the absence of the magnetic
field and are given by Eqs. �4.24a�, �4.24b�, and �4.24c� with
initial conditions �C4�–�C6�. Since the differential equations
for U, V, and W are identical, for the sake of argument we
select the first one, copied below for the reader’s conve-
nience,

−
d

dL
Us1s2;s3s4

�L� = �
s

Us1s2;ss�L�Uss;s3s4
�L� �C7�

and introduce the following ansatz:

Us1s2;s3s4
�L� =

Us1s2;s3s4
�0� + as1s2;s3s4

L

1 + bL
, �C8�

which satisfies the initial condition. Substituting this formula into the differential equation for U and multiplying the result by
�1+bL�2, we obtain an algebraic equation for as1s2;s3s4

and b

bUs1s2;s3s4
�0� − as1s2;s3s4

+ �
s

�Us1s2;ss�0� + as1s2;ssL��Uss;s3s4
�0� + ass;s3s4

L� = 0. �C9�

Grouping coefficients of a polynomial in L, we obtain the
following set of equations:

bUs1s2;s3s4
�0� − as1s2;s3s4

+ �
s

Us1s2;ss�0�Uss;s3s4
�0� = 0,

�C10�

�
s

�Us1s2;ss�0�ass;s3s4
+ as1s2;ssUss;s3s4

�0�� = 0, �C11�

�
s

as1s2;ssass;s3s4
= 0, �C12�

which are not independent. Thereby, we choose two out of
three equations, namely, Eqs. �C10� and �C12� with the s1
=s2=s3=s4=1 combination of the Rashba indices so that
there are 17 equations for 17 unknown variables: as1s2;s3s4
and b. The final solutions are listed below

U		;		�L� =
U

4

�1 	 ��2

1 + �1 + �2�UL/2
, �C13�

Uss;−s−s�L� = Us−s;−ss�L� = Us−s;s−s�L� =
U

4

1 − �2

1 + �1 + �2�UL/2
,

�C14�

U��	�;����L� =
U

4

1 � � − �2/2
1 + �1 + �2�UL/2

. �C15�

The same procedure is repeated to derive the V and W am-
plitudes listed below

Vss;ss�L� =
U

2

1 − �2

1 + �1 − �2�UL
, �C16�

Vss;−s−s�L� = −
U

2

1 − �2

1 + �1 − �2�UL
, �C17�

Vs−s;−ss�L� = −
U

2
�1 − �2� −

U

2

�2UL

1 + �1 − �2�UL
, �C18�

Vs−s;s−s�L� =
U

2
�1 + �2� −

U

2

�2UL

1 + �1 − �2�UL
, �C19�

V��	�;����L� = 	
U

2

�

1 + �1 − �2�UL
�C20�

and

W		;		�L� =
U

4

�1 � ��2

1 + �1 + �2�UL/2
, �C21�

Wss;−s−s�L� = Ws−s;−ss�L� = Ws−s;s−s�L� =
U

4

1 − �2

1 + �1 + �2�UL/2
,

�C22�
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W��	�;����L� = −
U

4

1 	 � − �2/2
1 + �1 + �2�UL/2

. �C23�

Summing up all the contributions to the backscattering am-
plitude, obtained from the Cooper amplitude for a special
choice of the momenta p=−k, i.e., for 
p−
k=�, we obtain

%s1s2;s3s4
�k,− k;− k,k� = Us1s2;s3s4

�L� − Vs1s2;s3s4
�L�

+ Ws1s2;s3s4
�L� . �C24�

To second order in the field, the backscattering amplitudes
read

%ss;ss�k,− k;− k,k� = � U

2 + UL
−

U

2�1 + UL�� + � U

2�1 + UL�2 +
2U

�2 + UL�2��2, �C25a�

%ss;−s−s�k,− k;− k,k� = � U

2 + UL
+

U

2�1 + UL�� − � U

2�1 + UL�2 −
2U

�2 + UL�2 +
2U

2 + UL
��2, �C25b�

%s−s;−ss�k,− k;− k,k� = � U

2 + UL
+

U

2
� − � U

2�1 + UL�
−

2U

�2 + UL�2 +
2U

2 + UL
��2, �C25c�

%s−s;s−s�k,− k;− k,k� = � U

2 + UL
−

U

2
� − � U

2�1 + UL�
−

2U

�2 + UL�2 +
2U

2 + UL
��2, �C25d�

%��	�;����k,− k;− k,k� = � � U

2�1 + UL�
+

U

2 + UL
�� . �C25e�

For �=0, we reproduce Eqs. �4.26�–�4.28�. In the limit of strong renormalization in the Cooper channel, i.e., for UL→ , the
field-dependent terms in Eqs. �C25a�–�C25e� vanish. A posteriori, this explains why we could obtain the renormalized result
�4.35� for �zz in the main text using only the zero-field amplitudes.

b. Renormalization of �zz in the Cooper channel

As in Sec. IV C 3, the thermodynamic potential in the presence of Cooper renormalization is obtained by substituting the
renormalized scattering amplitudes �C25a�–�C25e� into Eq. �4.32�

��zz = −
1

2
T�

�
� qdq

2�
�1

2
� U

2 + UL
−

U

2
�2

��+−
2 + �−+

2 − 2�0
2� + � U

2 + UL
+

U

2�1 + UL��
2

��+−�−+ − �0
2�

−
U2�16 + 32UL + 22U2L2 + 6U2L3 + U4L4�

4�1 + UL�2�2 + UL�2 �0
2� �C26a�

−
�2

�2kF
2 T�

�
� qdq

2�
�� U

2�1 + UL�
+

U

2 + UL
�2

�0��+− + �−+ − 2�0�

+�1

2
� U

2�1 + UL�
−

2U

�2 + UL�2 +
2U

2 + UL
�� U

2 + UL
−

U

2
���+−

2 + �−+
2 − 2�0

2� �C26b�

−�� U

2�1 + UL�2 −
2U

�2 + UL�2 +
2U

2 + UL
�� U

2 + UL
+

U

2�1 + UL����+−�−+ − �0
2�

−
U4L2�12 + 18UL + 7U2L2�

2�1 + UL�2�2 + UL�3 �0
2� . �C26c�

The first part of ��zz �C26a� came from the field-independent terms in the scattering amplitudes. This part depends on the
magnetic field through the combinations of the polarization bubbles. The second part �C26c� already contains a field-dependent
prefactor ��2� resulting from the field-dependent terms in the scattering amplitudes. Therefore, the polarization bubbles in this
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part can be evaluated in zero field. The integrals over q along with the summation over the Matsubara frequency � have
already been performed in Sec. III. Note that in each square bracket the last term �proportional to �0

2� depends neither on the
field nor on the SOI. In fact, it can be shown9,29 that this formally divergent contribution has a cubic dependence on
temperature, T���qdq�0

2�T3; thus it adds a higher-order correction and can be dropped. The final result reads

��zz = −
T3

8�vF
2 �mU

2�
�2�� 1

2 + UL
−

1

2
�2

F�2��2kF
2 + �2

T
�� −

�2

�2kF
2

T3

2�vF
2 �mU

2�
�2�� 1

2�1 + UL�
+

1

2 + UL
�2

F� ���kF

T
��
�C27�

+�1

2
� 1

2�1 + UL�
−

2

�2 + UL�2 +
2

2 + UL
�� 1

2 + UL
−

1

2
�F�2���kF

T
�� . �C28�

The spin susceptibility is obtained by expanding Eqs.
�C27�–�C28� further to order �2. We also need to recall that
our treatment of Cooper renormalization is only valid for
T� ���kF because we kept only the T- but not �-dependent
Cooper logarithms �see the discussion at the end of Sec.
IV C 1�. Therefore, the function F and its derivative should
be replaced by their large-argument forms, Eq. �3.27�. Doing
so, we obtain the final result for the nonanalytic part of the
�zz, presented in Eq. �4.37� in the main text.

2. In-plane magnetic field

a. RG flow of the scattering amplitudes

For the in-plane magnetic field, B=Bex, the RG flow of
the scattering amplitudes is more cumbersome because the
eigenvectors of Hamiltonian �1.1� depend in a complicated
way on the angle between the magnetic field and the electron
momentum

�k,s� =
1
�2
�s�̄k/�� − iei
k�k�

1
� , �C29�

where �̄k���2+2�k� sin 
k+�2k2�−1/2 is the effective Zee-
man energy. For that reason, the �double� Fourier series of

the scattering amplitude �4.17� in the angles 
k and 
p con-
tains infinitely many harmonics,

%s1s2;s3s4

�1� �k,− k;p,− p� = �
m,n=− 

 

%s1s2;s3s4

�1��m,n
 eim
pein
k,

�C30�

To second order in the field, however, the number of nonva-
nishing harmonics is limited to 15. Indeed, expanding the
eigenvector �C29� to second order in ��� / ���kF as

�k,s� =
1
�2

�sie−i
k�1 − i cos 
k� − �cos2 
k − i sin 2
k��2/2�
1

�
+ O��3� , �C31�

and substituting Eq. �C31� into the scattering amplitude
�4.17� with k�=−k and p�=−p, we obtain

%s1s2;s3s4

�1� �k,− k;p,− p� = Us1s2;s3s4
+ Vs1s2;s3s4

ei
pe−i
k + Ws1s2;s3s4
e2i
pe−2i
k

+ As1s2;s3s4
ei
pei
k + Bs1s2;s3s4

e−i
pe−i
k + Fs1s2;s3s4
e2i
pe−i
k + Gs1s2;s3s4

ei
pe−2i
k

+ Hs1s2;s3s4
ei
p + Js1s2;s3s4

e−i
k + Ls1s2;s3s4
e2i
p + Ms1s2;s3s4

e−2i
k

+ Ps1s2;s3s4
e3i
pe−i
k + Qs1s2;s3s4

ei
pe−3i
k + Rs1s2;s3s4
e4i
pe−2i
k + Ss1s2;s3s4

e2i
pe−4i
k + O��3� .

�C32�

ŻAK, MASLOV, AND LOSS PHYSICAL REVIEW B 82, 115415 �2010�

115415-26



Here,

Us1s2;s3s4
= %s1s2;s3s4

�1��0,0
 = �U/16��4 + �s1s3 + s2s4��2� ,

�C33�

Vs1s2;s3s4
= %s1s2;s3s4

�1��1,−1
 = �U/8��s1s3 + s2s4��2 − �2� ,

�C34�

Ws1s2;s3s4
= %s1s2;s3s4

�1��2,−2
 = �U/16��4s1s2s3s4 + �s1s3 + s2s4��2� ,

�C35�

As1s2;s3s4
= %s1s2;s3s4

�1��1,1
 = �U/32��s1s3 + s2s4��2 �C36�

Bs1s2;s3s4
= %s1s2;s3s4

�1��−1,−1
 = As1s2;s3s4
, �C37�

Fs1s2;s3s4
= %s1s2;s3s4

�1��2,−1
 = �U/8�i�s1s3 − s2s4�� , �C38�

Gs1s2;s3s4
= %s1s2;s3s4

�1��1,−2
 = − Fs1s2;s3s4
, �C39�

Hs1s2;s3s4
= %s1s2;s3s4

�1��1,0
 = − Fs1s2;s3s4
, �C40�

Js1s2;s3s4
= %s1s2;s3s4

�1��0,−1
 = Fs1s2;s3s4
, �C41�

Ls1s2;s3s4
= %s1s2;s3s4

�1��2,0
 = �U/16��s1s3 + s2s4 + 2s1s2s3s4��2,

�C42�

Ms1s2;s3s4
= %s1s2;s3s4

�1��0,−2
 = Ls1s2;s3s4
, �C43�

Ps1s2;s3s4
= %s1s2;s3s4

�1��3,−1
 = − 3As1s2;s3s4
, �C44�

Qs1s2;s3s4
= %s1s2;s3s4

�1��1,−3
 = Ps1s2;s3s4
, �C45�

Rs1s2;s3s4
= %s1s2;s3s4

�1��4,−2
 = − �U/8�s1s2s3s4�2, �C46�

Ss1s2;s3s4
= %s1s2;s3s4

�1��2,−4
 = Rs1s2;s3s4
. �C47�

The second-order amplitude is derived from Eq. �4.22� with
n=2

%s1s2;s4s3

�2� �k,− k;p,− p� = − L�
s

�Us1s2;ssUss;s3s4
+ Hs1s2;ssJss;s3s4

+ �Vs1s2;ssVss;s3s4
+ Fs1s2;ssGss;s3s4

+ Js1s2;ssHss;s3s4
�ei
pe−i
k

+ �Ws1s2;ssWss;s3s4
+ Gs1s2;ssFss;s3s4

�e2i
pe−2i
k + As1s2;ssVss;s3s4
ei
pei
k + Vs1s2;ssBss;s3s4

e−i
pe−i
k

+ �Vs1s2;ssFss;s3s4
+ Fs1s2;ssWss;s3s4

�e2i
pe−i
k + �Ws1s2;ssGss;s3s4
+ Gs1s2;ssVss;s3s4

�ei
pe−2i
k

+ �Hs1s2;ssVss;s3s4
+ Us1s2;ssHss;s3s4

�ei
p + �Vs1s2;ssJss;s3s4
+ Js1s2;ssUss;s3s4

�e−i
k + �Hs1s2;ssFss;s3s4

+ Us1s2;ssLss;s3s4
+ Ls1s2;ssWss;s3s4

�e2i
p + �Ws1s2;ssMss;s3s4
+ Gs1s2;ssJss;s3s4

+ Ms1s2;ssUss;s3s4
�e−2i
k

+ Vs1s2;ssPss;s3s4
e3i
pe−i
k + Qs1s2;ssVss;s3s4

ei
pe−3i
k + Ws1s2;ssRss;s3s4
e4i
pe−2i
k + Ss1s2;ssWss;s3s4

e2i
pe−4i
k


+ O��3� , �C48�

where L= �m /2��ln�
 /T�. The second-order amplitude contains the same combinations of the harmonics eim
p and ein
k as the
first-order amplitude, which proves the group property. The RG flow equations are obtained by replacing the left-hand side of
Eq. �C48� by the bare amplitude, letting the coefficients U¯S to depend on L, and differentiating with respect to L,

−
d

dL
Us1s2;s3s4

�L� = Us1s2;ss�L�Uss;s3s4
�L� + Hs1s2;ss�L�Jss;s3s4

�L� , �C49�

−
d

dL
Vs1s2;s3s4

�L� = Vs1s2;ss�L�Vss;s3s4
�L� + Fs1s2;ss�L�Gss;s3s4

�L� + Js1s2;ss�L�Hss;s3s4
�L� , �C50�

−
d

dL
Ws1s2;s3s4

�L� = Ws1s2;ss�L�Wss;s3s4
�L� + Gs1s2;ss�L�Fss;s3s4

�L� , �C51�

−
d

dL
As1s2;s3s4

�L� = As1s2;ss�L�Vss;s3s4
�L� , �C52�

−
d

dL
Bs1s2;s3s4

�L� = Vs1s2;ss�L�Bss;s3s4
�L� , �C53�
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−
d

dL
Fs1s2;s3s4

�L� = Vs1s2;ss�L�Fss;s3s4
�L� + Fs1s2;ss�L�Wss;s3s4

�L� , �C54�

−
d

dL
Gs1s2;s3s4

�L� = Ws1s2;ss�L�Gss;s3s4
�L� + Gs1s2;ss�L�Vss;s3s4

�L� , �C55�

−
d

dL
Hs1s2;s3s4

�L� = Hs1s2;ss�L�Vss;s3s4
�L� + Us1s2;ss�L�Hss;s3s4

�L� , �C56�

−
d

dL
Js1s2;s3s4

�L� = Vs1s2;ss�L�Jss;s3s4
�L� + Js1s2;ss�L�Uss;s3s4

�L� , �C57�

−
d

dL
Ls1s2;s3s4

�L� = Hs1s2;ss�L�Fss;s3s4
�L� + Us1s2;ss�L�Lss;s3s4

�L� + Ls1s2;ss�L�Wss;s3s4
�L� , �C58�

−
d

dL
Ms1s2;s3s4

�L� = Ws1s2;ss�L�Mss;s3s4
�L� + Gs1s2;ss�L�Jss;s3s4

�L� + Ms1s2;ss�L�Uss;s3s4
�L� , �C59�

−
d

dL
Ps1s2;s3s4

�L� = Vs1s2;ss�L�Pss;s3s4
�L� , �C60�

−
d

dL
Qs1s2;s3s4

�L� = Qs1s2;ss�L�Vss;s3s4
�L� , �C61�

−
d

dL
Rs1s2;s3s4

�L� = Ws1s2;ss�L�Rss;s3s4
�L� , �C62�

−
d

dL
Ss1s2;s3s4

�L� = Ss1s2;ss�L�Wss;s3s4
�L� , �C63�

where summation over the repeated index s is implied. The initial conditions are given by Xs1,s2;s3,s4
�0�=Xs1,s2;s3,s4

with X
=U¯S. Since it is very difficult to solve this system of differential equations analytically, a new approach is required. In what
follows, we will determine U�L� , . . . ,S�L� for a few lowest orders in the “RG time” L and then make a guess for a form of an
arbitrary-order term. The RG equations will then provide a necessary check as to whether our guess, based on the perturbative
calculation, gives a correct answer.

A few lowest order amplitudes can be derived perturbatively from Eq. �4.22�, copied here for the reader’s convenience,

%s1s2;s4s3

�j� �k,− k;p,− p��L� = − L�
s
�

0

2� d
l

2�
%s1s2;ss

�j−1� �k,− k;l,− l�%ss;s4s3

�1� �l,− l;p,− p� , �C64�

with j&2 standing for order of the perturbation theory. Since the scattering amplitudes depend on angles 
k and 
p, they can
be decomposed order by order into the Fourier series,

%s1s2;s3s4

�j� �k,− k;p,− p� = �
m,n=− 

 

%s1s2;s3s4

�j��m,n
 emi
peni
k, �C65�

where the coefficients in front of eim
pein
k are determined using the orthogonality property,

%s1s2;s4s3

�j��m,n
 �k,− k;p,− p� = �
0

2� d
k

2�
�

0

2� d
p

2�
%s1s2;s4s3

�j� �k,− k;p,− p�e−im
pe−in
k. �C66�
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Resumming the coefficients of eim
pein
k to infinite order
�with m and n being fixed�

%s1s2;s4s3

� ��m,n
�k,− k;p,− p� = �
j=1

 

%s1s2;s4s3

�j��m,n
 �k,− k;p,− p� ,

�C67�

we can find the renormalized amplitudes. For each combina-
tion of partial harmonics, which occurs to second order in the
magnetic field, we derive explicitly the scattering amplitudes
up to seventh order in the Cooper channel renormalization
parameter UL and then make a guess for general jth order
amplitude. The final result is obtained by resuming these
amplitudes to infinite order and then substituted into the RG
flow equations to check the correctness of our guess. In all
cases, the guess turns out to be correct. All nonzero RG
charges as well as their large L limits are listed below. We
begin with the n=m=0 and n=m=1 harmonics, given by

Uss;ss�L� =
U

2

1

2 + UL
+

U

8
�2 =

U

8
�2 + O�ln−1 T� ,

�C68�

Uss;−s−s�L� =
U

2

1

2 + UL
−

U

8
�2 = −

U

8
�2 + O�ln−1 T� ,

�C69�

Us−s;−ss�L� =
U

2

1

2 + UL
−

U

8

1

1 + UL
�2 = O�ln−1 T� ,

�C70�

Us−s;s−s�L� =
U

2

1

2 + UL
+

U

8

1

1 + UL
�2 = O�ln−1 T� ,

�C71�

U��	�;����L� =
U

2

1

2 + UL
= O�ln−1 T� , �C72�

Vss;ss�L� =
U

2

1

1 + UL
−

U

4

1

�1 + UL�2�2 = O�ln−1 T� ,

�C73�

Vss;−s−s�L� = −
U

2

1

1 + UL
+

U

4

1

�1 + UL�2�2 = O�ln−1 T� ,

�C74�

Vs−s;−ss�L� = −
U

2
+

U

4
�1 + UL��2 = −

U

2
+ O�U2� ,

�C75�

Vs−s;s−s�L� =
U

2
−

U

4
�1 + UL��2 =

U

2
+ O�U2� . �C76�

An important remark should be made at this point: in addi-
tion to amplitudes which flow either to zero or to finite val-

ues at low temperatures, there are also amplitudes which
grow logarithmically at low temperatures, namely, the ampli-
tudes in Eqs. �C75� and �C76�. This peculiar feature, which
occurs only in the presence of both the SOI and in-plane
magnetic field, may indicate a phase transition below certain
field-dependent temperature or it may be an artifact of the
expansion to lowest order in �2. In the derivation of the spin
susceptibility that follows in Appendix C 2 b, we assume that
the electron gas is far above the temperature below which the
instability becomes important, i.e., that UL�1 /�2, so that
the effect of the instability can be neglected but the nonper-
turbative regime of Cooper renormalization, where 1�UL
�1 /�2, can still be accessed.

The remaining harmonics are

Wss;ss�L� = Uss;ss�L� , �C77�

Wss;−s−s�L� = Uss;−s−s�L� , �C78�

Ws−s;−ss�L� = Us−s;−ss�L� , �C79�

Ws−s;s−s�L� = Us−s;s−s�L� , �C80�

W��	�;����L� = − U��	�;����L� , �C81�

Ass;ss�L� = − Ass;−s−s�L� =
U

16

1

1 + UL
�2 = O�ln−1 T� ,

�C82�

As−s;−ss�L� = − As−s;s−s�L� = −
U

16
�2 �C83�

Bs1s2;s3s4
�L� = As1s2;s3s4

�L� . �C84�

F	�;���L� = −
U

4
i� , �C85�

F�	;���L� =
U

4
i� , �C86�

F��;	��L� = −
U

4

1

1 + UL
i� = O�ln−1 T� , �C87�

F��;�	�L� =
U

4

1

1 + UL
i� = O�ln−1 T� , �C88�

G	�;���L� =
U

4

1

1 + UL
i� = O�ln−1 T� , �C89�

G�	;���L� = −
U

4

1

1 + UL
i� = O�ln−1 T� , �C90�

G��;	��L� =
U

4
i� , �C91�
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G��;�	�L� = −
U

4
i� , �C92�

Hs1s2;s3s4
�L� = Gs1s2;s3s4

�L� , �C93�

Js1s2;s3s4
�L� = Fs1s2;s3s4

�L� , �C94�

Lss;ss�L� =
U

2

1

�2 + UL�2 +
U

8
�2 =

U

8
�2 + O�ln−1 T� ,

�C95�

Lss;−s−s�L� =
U

2

1

�2 + UL�2 −
U

8
�2 = −

U

8
�2 + O�ln−1 T� ,

�C96�

Ls−s;−ss�L� =
U

8

�4 + 3UL�UL

�1 + UL��2 + UL�2�2 = O�ln−1 T� ,

�C97�

Ls−s;s−s�L� =
U

8

8 + 12UL + 5U2L2

�1 + UL��2 + UL�2�2 = O�ln−1 T� ,

�C98�

L	�;���L� = L�	;���L� = −
U

2

1 + UL

�2 + UL�2�2 = O�ln−1 T� ,

�C99�

L��;	��L� = L��;�	�L� = −
U

2

1

�2 + UL�2�2 = O�ln−1 T� .

�C100�

Mss;ss�L� = Lss;ss�L� , �C101�

Mss;−s−s�L� = Lss;−s−s�L� , �C102�

Ms−s;−ss�L� = Ls−s;−ss�L� , �C103�

Ms−s;s−s�L� = Ls−s;s−s�L� , �C104�

M	�;���L� = L�	;���L� = −
U

2

1

�2 + UL�2�2 = O�ln−1 T� ,

�C105�

M��;	��L� = L��;�	�L� = −
U

2

1 + UL

�2 + UL�2�2 = O�ln−1 T� ,

�C106�

Ps1s2;s3s4
�L� = Qs1s2;s3s4

�L� = − 3As1s2;s3s4
�L� , �C107�

Rss;ss�L� = Rss;−s−s�L� = Rs−s;−ss�L� = Rs−s;s−s�L�

= −
U

4

1

2 + UL
�2 = O�ln−1 T� , �C108�

R��	�;����L� =
U

4

1

2 + UL
�2 = O�ln−1 T� , �C109�

Ss1s2;s3s4
�L� = Rs1s2;s3s4

�L� . �C110�

It can be readily verified that all the amplitudes satisfy RG
equations �C49�–�C63� with initial conditions �C33�–�C47�
up to O��3� accuracy.

Finally, the renormalized scattering amplitude is given by

%s1s2;s3s4
�k,− k;p,− p� = Us1s2;s3s4

�L� + Vs1s2;s3s4
�L�ei
pe−i
k + Ws1s2;s3s4

�L�e2i
pe−2i
k

+ As1s2;s3s4
�L�ei
pei
k + Bs1s2;s3s4

�L�e−i
pe−i
k + Fs1s2;s3s4
�L�e2i
pe−i
k + Gs1s2;s3s4

�L�ei
pe−2i
k

+ Hs1s2;s3s4
�L�ei
p + Js1s2;s3s4

�L�e−i
k + Ls1s2;s3s4
�L�e2i
p + Ms1s2;s3s4

�L�e−2i
k

+ Ps1s2;s3s4
�L�e3i
pe−i
k + Qs1s2;s3s4

�L�ei
pe−3i
k + Rs1s2;s3s4
�L�e4i
pe−2i
k + Ss1s2;s3s4

�L�e2i
pe−4i
k.

�C111�

b. Renormalization of �xx

As for the transverse-field case, the free energy for the in-plane magnetic field is found by replacing the bare interaction U
in Eq. �3.38� by the renormalized vertex %,

��xx = −
1

4
�

0

2� d
k

2�
T�

�
�
�si

�

0

 qdq

2�
%s1s4;s3s2

�k,− k;− k,k�%s3s2;s1s4
�− k,k;k,− k��s1s2

+kF�s3s4

−kF , �C112�

where �ss�
	kF given by Eq. �3.39� depends on the direction of the electron momentum with respect to the magnetic field.

A general formula for ��xx is very complicated; however, in the regime of strong Cooper renormalization, i.e., for
1�UL�1 /�2, there are only a few partial amplitudes which survive the downward renormalization. Keeping only these
partial amplitudes in %, we obtain for the thermodynamic potential
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��xx = −
U2

16
�

0

2� d
k

2�
T�

�
� qdq

2�
���−+

+kF�−+
−kF + �+−

+kF�+−
−kF − 2�0

2� + 4�0
2�

−
�2

�2kF
2

U2

8
T�

�
� qdq

2�
��0��−+ + �+− − 2�0� + �0

2� , �C113�

where the angular dependence of the polarization bubbles in
the second line was neglected because of an overall factor �2

originating from the scattering amplitudes, and the angular
integral in those terms was readily performed. On the other
hand, the field dependence in the first term is exclusively due
to the bubbles; hence the angular integration has to be car-
ried out last. The integrals over the momentum and fre-
quency yield

��xx = −
T3

8�vF
2 �mU

4�
�2��

0

2� d
k

2�
F� �̄kF

+ �̄−kF

T
�

+ 2
�2

�2kF
2 F� ���kF

T
�� . �C114�

Expanding F�x�
x3 /3 for x�1 and differentiating with re-

spect to the field twice, we obtain for the nonanalytic part of
the spin susceptibility

��xx =
1

3
�0�mU

4�
�2 ���kF

EF
. �C115�

Somewhat unexpectedly, the fully renormalized result
�C115� coincides with the leading �first� term in the second-
order result �3.51�. The formally subleading but T-dependent
T /2EF term in Eq. �3.51� does not show up in the fully
renormalized result, which implies that, at best, it is of order
T /UL�T / ln T for large but finite UL. Hence follows the
result for ��xx presented in the main text, Eq. �4.39�.
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